National Renewable Energy Laboratory, Chemistry and Nanoscience Center, Golden, CO, 80401, USA.
National Renewable Energy Laboratory, Chemistry and Nanoscience Center, Golden, CO, 80401, USA. Material Science and Engineering Program, University of Colorado, Boulder, CO, 80309, USA.
Science. 2015 Nov 27;350(6264):1061-5. doi: 10.1126/science.aad3459.
Solar photoconversion in semiconductors is driven by charge separation at the interface of the semiconductor and contacting layers. Here we demonstrate that time-resolved photoinduced reflectance from a semiconductor captures interfacial carrier dynamics. We applied this transient photoreflectance method to study charge transfer at p-type gallium-indium phosphide (p-GaInP2) interfaces critically important to solar-driven water splitting. We monitored the formation and decay of transient electric fields that form upon photoexcitation within bare p-GaInP2, p-GaInP2/platinum (Pt), and p-GaInP2/amorphous titania (TiO2) interfaces. The data show that a field at both the p-GaInP2/Pt and p-GaInP2/TiO2 interfaces drives charge separation. Additionally, the charge recombination rate at the p-GaInP2/TiO2 interface is greatly reduced owing to its p-n nature, compared with the Schottky nature of the p-GaInP2/Pt interface.
半导体中的太阳能光转换是由半导体和接触层界面处的电荷分离驱动的。在这里,我们证明了半导体的时间分辨光致反射可以捕获界面载流子动力学。我们应用这种瞬态光反射法来研究在 p 型镓铟磷 (p-GaInP2) 界面处的电荷转移,这对太阳能驱动的水分解至关重要。我们监测了在 bare p-GaInP2、p-GaInP2/铂 (Pt) 和 p-GaInP2/非晶二氧化钛 (TiO2) 界面中光激发后形成和衰减的瞬态电场。数据表明,在 p-GaInP2/Pt 和 p-GaInP2/TiO2 界面处的电场都能驱动电荷分离。此外,与 p-GaInP2/Pt 界面的肖特基性质相比,p-GaInP2/TiO2 界面的电荷复合速率由于其 p-n 性质而大大降低。