Suppr超能文献

四链体DNA的单链环作为测试核酸力场的关键基准。

Single Stranded Loops of Quadruplex DNA As Key Benchmark for Testing Nucleic Acids Force Fields.

作者信息

Fadrná Eva, Špačková Nad'a, Sarzyñska Joanna, Koča Jaroslav, Orozco Modesto, Cheatham Thomas E, Kulinski Tadeusz, Šponer Jiří

机构信息

National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61 704 Poznań, Poland, Joint IRB-BSC program on Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain, Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain, Department of Biochemistry, University of Barcelona, Diagonal 647, 08028 Barcelona, Spain, and Departments of Medicinal Chemistry and of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, Utah 84112.

出版信息

J Chem Theory Comput. 2009 Sep 8;5(9):2514-30. doi: 10.1021/ct900200k. Epub 2009 Aug 19.

Abstract

We have carried out a set of explicit solvent molecular dynamics (MD) simulations on two DNA quadruplex (G-DNA) molecules, namely the antiparallel d(G4T4G4)2 dimeric quadruplex with diagonal loops and the parallel-stranded human telomeric monomolecular quadruplex d[AGGG(TTAGGG)3] with three propeller loops. The main purpose of the paper was testing of the capability of the MD simulation technique to describe single-stranded topologies of G-DNA loops, which represent a very challenging task for computational methods. The total amount of conventional and locally enhanced sampling (LES) simulations analyzed in this study exceeds 1.5 μs, while we tested several versions of the AMBER force field (parm99, parmbsc0, and a version with modified glycosidic χ torsion profile) and the CHARMM27 force field. Further, we compared minimal salt and excess salt simulations. Postprocessing MM-PBSA (Molecular Mechanics, Poisson-Boltzmann, Surface Area) free energy calculations are also reported. None of the presently available force fields is accurate enough in describing the G-DNA loops. The imbalance is best seen for the propeller loops, as their experimental structure is lost within a few ns of standard simulations with all force fields. Among them, parmbsc0 provides results that are clearly closest to the experimental target values but still not in full agreement. This confirms that the improvement of the γ torsional profile penalizing the γ trans substates in the parmbsc0 parametrization was a step in the right direction, albeit not sufficient to treat all imbalances. The modified χ parametrization appears to rigidify the studied systems but does not change the ultimate outcome of the present simulations. The structures obtained in simulations with the modified χ profile are predetermined by its combination with either parm99 or parmbsc0. Experimental geometries of diagonal loops of d(G4T4G4)2 are stable in standard simulations on the ∼10 ns time scale but are becoming progressively lost in longer and LES simulations. In addition, the d(G4T4G4)2 quadruplex contains, besides the three genuine binding sites for cations in the channel of its stem, also an ion binding site at each stem-loop junction. This arrangement of five cations in the quadruplex core region is entirely unstable in all 24 simulations that we attempted. Overall, our results confirm that G-DNA loops represent one of the most difficult targets for molecular modeling approaches and should be considered as reference structures in any future studies aiming to develop or tune nucleic acids force fields.

摘要

我们对两个DNA四链体(G-DNA)分子进行了一组显式溶剂分子动力学(MD)模拟,即具有对角环的反平行d(G4T4G4)2二聚体四链体和平行链人类端粒单分子四链体d[AGGG(TTAGGG)3],后者带有三个螺旋桨环。本文的主要目的是测试MD模拟技术描述G-DNA环单链拓扑结构的能力,这对计算方法来说是一项极具挑战性的任务。本研究中分析的传统模拟和局部增强采样(LES)模拟的总量超过1.5微秒,同时我们测试了多个版本的AMBER力场(parm99、parmbsc0以及一个糖苷键χ扭转轮廓经过修改的版本)和CHARMM27力场。此外,我们比较了低盐和高盐模拟。还报告了后处理MM-PBSA(分子力学、泊松-玻尔兹曼、表面积)自由能计算结果。目前可用的力场在描述G-DNA环时都不够准确。对于螺旋桨环来说,这种不平衡最为明显,因为在所有力场的标准模拟中,它们的实验结构在几纳秒内就会丢失。其中,parmbsc0提供的结果明显最接近实验目标值,但仍不完全一致。这证实了在parmbsc0参数化中对γ反式亚态进行惩罚的γ扭转轮廓的改进是朝着正确方向迈出的一步,尽管还不足以处理所有的不平衡。修改后的χ参数化似乎使所研究的系统变得僵化,但并没有改变当前模拟的最终结果。在使用修改后的χ轮廓进行模拟时获得的结构由其与parm99或parmbsc0的组合预先决定。d(G4T4G4)2对角环的实验几何结构在约10纳秒时间尺度的标准模拟中是稳定的,但在更长时间的模拟和LES模拟中会逐渐丢失。此外,d(G4T4G4)2四链体除了在其茎部通道中有三个真正的阳离子结合位点外,在每个茎环连接处还有一个离子结合位点。在我们尝试的所有24次模拟中,四链体核心区域中这五个阳离子的这种排列完全不稳定。总体而言,我们的结果证实G-DNA环是分子建模方法最困难的目标之一,在未来旨在开发或调整核酸力场的任何研究中都应将其视为参考结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验