Suppr超能文献

在人类癫痫的癫痫棘波分析中使用个体特异性血流动力学反应函数:一项基于脑电图 - 近红外光谱技术的研究

Using patient-specific hemodynamic response function in epileptic spike analysis of human epilepsy: a study based on EEG-fNIRS.

作者信息

Peng Ke, Nguyen Dang Khoa, Vannasing Phetsamone, Tremblay Julie, Lesage Frédéric, Pouliot Philippe

机构信息

Département de génie électrique, Institut de génie biomédical, École Polytechnique de Montréal, C.P.6079, Succ. Centre-ville, Montréal, QC H3C3A7, Canada.

Service de neurologie, Hôpital Notre-Dame du CHUM, 1560 Rue Sherbrooke Est, Montréal, QC H3L4M1, Canada.

出版信息

Neuroimage. 2016 Feb 1;126:239-55. doi: 10.1016/j.neuroimage.2015.11.045. Epub 2015 Nov 24.

Abstract

Functional near-infrared spectroscopy (fNIRS) can be combined with electroencephalography (EEG) to continuously monitor the hemodynamic signal evoked by epileptic events such as seizures or interictal epileptiform discharges (IEDs, aka spikes). As estimation methods assuming a canonical shape of the hemodynamic response function (HRF) might not be optimal, we sought to model patient-specific HRF (sHRF) with a simple deconvolution approach for IED-related analysis with EEG-fNIRS data. Furthermore, a quadratic term was added to the model to account for the nonlinearity in the response when IEDs are frequent. Prior to analyzing clinical data, simulations were carried out to show that the HRF was estimable by the proposed deconvolution methods under proper conditions. EEG-fNIRS data of five patients with refractory focal epilepsy were selected due to the presence of frequent clear IEDs and their unambiguous focus localization. For each patient, both the linear sHRF and the nonlinear sHRF were estimated at each channel. Variability of the estimated sHRFs was seen across brain regions and different patients. Compared with the SPM8 canonical HRF (cHRF), including these sHRFs in the general linear model (GLM) analysis led to hemoglobin activations with higher statistical scores as well as larger spatial extents on all five patients. In particular, for patients with frequent IEDs, nonlinear sHRFs were seen to provide higher sensitivity in activation detection than linear sHRFs. These observations support using sHRFs in the analysis of IEDs with EEG-fNIRS data.

摘要

功能近红外光谱技术(fNIRS)可与脑电图(EEG)相结合,以持续监测癫痫发作或发作间期癫痫样放电(IEDs,即尖波)等癫痫事件诱发的血流动力学信号。由于假设血流动力学响应函数(HRF)具有标准形状的估计方法可能并非最优,我们试图采用一种简单的去卷积方法为与IED相关的脑电图 - fNIRS数据分析建立患者特异性HRF(sHRF)模型。此外,在模型中添加了一个二次项,以考虑IED频繁出现时响应中的非线性。在分析临床数据之前,进行了模拟以表明在所提出的去卷积方法在适当条件下可估计HRF。由于存在频繁清晰的IED及其明确的病灶定位,选择了五名难治性局灶性癫痫患者的脑电图 - fNIRS数据。对于每位患者,在每个通道估计线性sHRF和非线性sHRF。在不同脑区和不同患者之间观察到估计的sHRF存在变异性。与SPM8标准HRF(cHRF)相比,在一般线性模型(GLM)分析中纳入这些sHRF会使所有五名患者的血红蛋白激活具有更高的统计得分以及更大的空间范围。特别是,对于IED频繁的患者,观察到非线性sHRF在激活检测中比线性sHRF具有更高的灵敏度。这些观察结果支持在利用脑电图 - fNIRS数据进行IED分析时使用sHRF。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验