Suppr超能文献

利用神经血管耦合:贝叶斯序贯蒙特卡罗方法在模拟 EEG-fNIRS 数据中的应用。

Exploiting neurovascular coupling: a Bayesian sequential Monte Carlo approach applied to simulated EEG fNIRS data.

机构信息

Department of Neuroscience, Imaging and Clinical Sciences, 'G.dAnnunzio' University, Chieti, Italy. Institute of Advanced Biomedical Technologies, 'G.dAnnunzio' University, Chieti, Italy.

出版信息

J Neural Eng. 2017 Aug;14(4):046029. doi: 10.1088/1741-2552/aa7321.

Abstract

OBJECTIVE

Electrical and hemodynamic brain activity are linked through the neurovascular coupling process and they can be simultaneously measured through integration of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Thanks to the lack of electro-optical interference, the two procedures can be easily combined and, whereas EEG provides electrophysiological information, fNIRS can provide measurements of two hemodynamic variables, such as oxygenated and deoxygenated hemoglobin. A Bayesian sequential Monte Carlo approach (particle filter, PF) was applied to simulated recordings of electrical and neurovascular mediated hemodynamic activity, and the advantages of a unified framework were shown.

APPROACH

Multiple neural activities and hemodynamic responses were simulated in the primary motor cortex of a subject brain. EEG and fNIRS recordings were obtained by means of forward models of volume conduction and light propagation through the head. A state space model of combined EEG and fNIRS data was built and its dynamic evolution was estimated through a Bayesian sequential Monte Carlo approach (PF).

MAIN RESULTS

We showed the feasibility of the procedure and the improvements in both electrical and hemodynamic brain activity reconstruction when using the PF on combined EEG and fNIRS measurements.

SIGNIFICANCE

The investigated procedure allows one to combine the information provided by the two methodologies, and, by taking advantage of a physical model of the coupling between electrical and hemodynamic response, to obtain a better estimate of brain activity evolution. Despite the high computational demand, application of such an approach to in vivo recordings could fully exploit the advantages of this combined brain imaging technology.

摘要

目的

电和血流动力学脑活动通过神经血管耦合过程联系在一起,通过脑电图(EEG)和功能近红外光谱(fNIRS)的集成可以同时测量它们。由于缺乏光电干扰,这两个过程可以轻松地结合在一起,而 EEG 提供电生理信息,fNIRS 可以提供两种血液动力学变量的测量,例如氧合和去氧血红蛋白。应用贝叶斯序贯蒙特卡罗方法(粒子滤波器,PF)对电和神经血管介导的血流动力学活动的模拟记录进行了分析,并展示了统一框架的优势。

方法

在主体大脑的初级运动皮层中模拟了多种神经活动和血液动力学反应。通过头部容积传导和光传播的正向模型获得 EEG 和 fNIRS 记录。建立了 EEG 和 fNIRS 数据的联合状态空间模型,并通过贝叶斯序贯蒙特卡罗方法(PF)对其动态演化进行了估计。

主要结果

我们展示了该方法的可行性,以及在使用 PF 对 EEG 和 fNIRS 联合测量时,对电和血流动力学脑活动重建的改进。

意义

所研究的方法允许将两种方法提供的信息结合起来,并利用电和血流动力学响应之间的物理模型,获得大脑活动演变的更好估计。尽管计算需求很高,但这种方法在体内记录中的应用可以充分利用这种联合脑成像技术的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验