Deka Ranjit K, Brautigam Chad A, Liu Wei Z, Tomchick Diana R, Norgard Michael V
Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390.
Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390.
Microbiologyopen. 2016 Feb;5(1):21-38. doi: 10.1002/mbo3.306. Epub 2015 Dec 2.
We recently reported a flavin-trafficking protein (Ftp) in the syphilis spirochete Treponema pallidum (Ftp_Tp) as the first bacterial metal-dependent FAD pyrophosphatase that hydrolyzes FAD into AMP and FMN in the periplasm. Orthologs of Ftp_Tp in other bacteria (formerly ApbE) appear to lack this hydrolytic activity; rather, they flavinylate the redox subunit, NqrC, via their metal-dependent FMN transferase activity. However, nothing has been known about the nature or mechanism of metal-dependent Ftp catalysis in either Nqr- or Rnf-redox-containing bacteria. In the current study, we identified a bimetal center in the crystal structure of Escherichia coli Ftp (Ftp_Ec) and show via mutagenesis that a single amino acid substitution converts it from an FAD-binding protein to a Mg(2+)-dependent FAD pyrophosphatase (Ftp_Tp-like). Furthermore, in the presence of protein substrates, both types of Ftps are capable of flavinylating periplasmic redox-carrying proteins (e.g., RnfG_Ec) via the metal-dependent covalent attachment of FMN. A high-resolution structure of the Ftp-mediated flavinylated protein of Shewanella oneidensis NqrC identified an essential lysine in phosphoester-threonyl-FMN bond formation in the posttranslationally modified flavoproteins. Together, these discoveries broaden our understanding of the physiological capabilities of the bacterial periplasm, and they also clarify a possible mechanism by which flavoproteins are generated.
我们最近报道了梅毒螺旋体苍白密螺旋体中的一种黄素转运蛋白(Ftp)(Ftp_Tp),它是首个细菌金属依赖性FAD焦磷酸酶,可在周质中将FAD水解为AMP和FMN。其他细菌中Ftp_Tp的直系同源物(以前称为ApbE)似乎缺乏这种水解活性;相反,它们通过其金属依赖性FMN转移酶活性将氧化还原亚基NqrC黄素化。然而,对于含Nqr或Rnf氧化还原的细菌中金属依赖性Ftp催化的性质或机制尚不清楚。在当前的研究中,我们在大肠杆菌Ftp(Ftp_Ec)的晶体结构中鉴定出一个双金属中心,并通过诱变表明,单个氨基酸取代可将其从FAD结合蛋白转变为Mg(2+)依赖性FAD焦磷酸酶(类似Ftp_Tp)。此外,在蛋白质底物存在的情况下,两种类型的Ftp都能够通过FMN的金属依赖性共价连接将周质中携带氧化还原的蛋白质(例如RnfG_Ec)黄素化。嗜温栖热放线菌NqrC经Ftp介导的黄素化蛋白的高分辨率结构确定了翻译后修饰的黄素蛋白中磷酸酯苏氨酰-FMN键形成中的一个必需赖氨酸。总之,这些发现拓宽了我们对细菌周质生理功能的理解,也阐明了黄素蛋白产生的可能机制。