Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
mBio. 2020 Sep 22;11(5):e02249-20. doi: 10.1128/mBio.02249-20.
A longstanding conundrum in biology concerns how the spirochete generates sufficient energy to fulfill its complex pathogenesis processes during human syphilitic infection. For decades, it has been assumed that the bacterium relies solely on glucose catabolism (via glycolysis) for generation of its ATP. However, the organism's robust motility, believed to be essential for human tissue invasion and dissemination, would require abundant ATP likely not provided by the parsimony of glycolysis. As such, additional ATP generation, either via a chemiosmotic gradient, substrate-level phosphorylation, or both, likely exists in Along these lines, we have hypothesized that exploits an acetogenic energy conservation pathway that relies on the redox chemistry of flavins. Central to this hypothesis is the apparent existence in of an acetogenic pathway for the conversion of d-lactate to acetate. Herein we have characterized the structural, biophysical, and biochemical properties of the first enzyme (d-lactate dehydrogenase [d-LDH]; TP0037) predicted in this pathway. Binding and enzymatic studies showed that recombinant TP0037 consumed d-lactate and NAD to produce pyruvate and NADH. The crystal structure of TP0037 revealed a fold similar to that of other d-acid dehydrogenases; residues in the cofactor-binding and active sites were homologous to those of other known d-LDHs. The crystal structure and solution biophysical experiments revealed the protein's propensity to dimerize, akin to other d-LDHs. This study is the first to elucidate the enzymatic properties of 's d-LDH, thereby providing new compelling evidence for a flavin-dependent acetogenic energy conservation (ATP-generating) pathway in Because lacks a Krebs cycle and the capability for oxidative phosphorylation, historically it has been difficult to reconcile how the syphilis spirochete generates sufficient ATP to fulfill its energy needs, particularly for its robust motility, solely from glycolysis. We have postulated the existence in of a flavin-dependent acetogenic energy conservation pathway that would generate additional ATP for bioenergetics. In the proposed acetogenic pathway, first d-lactate would be converted to pyruvate. Pyruvate would then be metabolized to acetate in three additional steps, with ATP being generated via substrate-level phosphorylation. This study provides structural, biochemical, and biophysical evidence for the first enzyme in the pathway (TP0037; d-lactate dehydrogenase) requisite for the conversion of d-lactate to pyruvate. The findings represent the first experimental evidence to support a role for an acetogenic energy conservation pathway that would contribute to nonglycolytic ATP production in .
生物学中长期存在的一个难题是螺旋体如何产生足够的能量来完成其在人类梅毒感染过程中的复杂发病机制。几十年来,人们一直认为这种细菌仅依赖葡萄糖分解代谢(通过糖酵解)来产生其 ATP。然而,这种生物体强大的运动能力,被认为对人类组织的侵袭和传播至关重要,这可能需要大量的 ATP,而糖酵解的简约性可能无法提供这些 ATP。因此,可能存在其他的 ATP 生成途径,无论是通过化学渗透梯度、底物水平磷酸化还是两者兼而有之。沿着这些思路,我们假设 利用了一种依赖黄素氧化还原化学的产乙酸能保守途径。这一假设的核心是 中似乎存在一种将 d-乳酸转化为乙酸的产乙酸途径。在此,我们描述了该途径中第一个酶(d-乳酸脱氢酶 [d-LDH];TP0037)的结构、生物物理和生化特性。结合和酶学研究表明,重组 TP0037 消耗 d-乳酸和 NAD 以产生丙酮酸和 NADH。TP0037 的晶体结构揭示了一种类似于其他 d-酸脱氢酶的折叠;辅因子结合和活性位点的残基与其他已知的 d-LDH 同源。晶体结构和溶液生物物理实验表明该蛋白倾向于二聚化,类似于其他 d-LDH。这项研究首次阐明了 的 d-LDH 的酶学特性,从而为 中依赖黄素的产乙酸能保守(ATP 生成)途径提供了新的有力证据。由于 缺乏三羧酸循环和氧化磷酸化的能力,历史上很难解释梅毒螺旋体如何仅通过糖酵解产生足够的 ATP 来满足其能量需求,特别是对于其强大的运动能力。我们假设在 中存在一种依赖黄素的产乙酸能保守途径,该途径将为 生物能学生成额外的 ATP。在提出的产乙酸途径中,首先 d-乳酸将转化为丙酮酸。然后,丙酮酸将在另外三个步骤中代谢为乙酸,通过底物水平磷酸化生成 ATP。这项研究提供了结构、生化和生物物理证据,证明了该途径中的第一个酶(TP0037;d-乳酸脱氢酶)对于将 d-乳酸转化为丙酮酸是必需的。这些发现代表了支持产乙酸能保守途径在非糖酵解 ATP 产生中发挥作用的第一个实验证据。