Suppr超能文献

通过点击化学辅助单分子机械解折叠对高阶G-四链体结构的分解视图

Exploded view of higher order G-quadruplex structures through click-chemistry assisted single-molecule mechanical unfolding.

作者信息

Selvam Sangeetha, Yu Zhongbo, Mao Hanbin

机构信息

Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.

Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA

出版信息

Nucleic Acids Res. 2016 Jan 8;44(1):45-55. doi: 10.1093/nar/gkv1326. Epub 2015 Nov 30.

Abstract

Due to the long-range nature of high-order interactions between distal components in a biomolecule, transition dynamics of tertiary structures is often too complex to profile using conventional methods. Inspired by the exploded view in mechanical drawing, here, we used laser tweezers to mechanically dissect high-order DNA structures into two constituting G-quadruplexes in the promoter of the human telomerase reverse transcriptase (hTERT) gene. Assisted with click-chemistry coupling, we sandwiched one G-quadruplex with two dsDNA handles while leaving the other unit free. Mechanical unfolding through these handles revealed transition dynamics of the targeted quadruplex in a native environment, which is named as native mechanical segmentation (NMS). Comparison between unfolding of an NMS construct and that of truncated G-quadruplex constructs revealed a quadruplex-quadruplex interaction with 2 kcal/mol stabilization energy. After mechanically targeting the two G-quadruplexes together, the same interaction was observed during the first unfolding step. The unfolding then proceeded through disrupting the weaker G-quadruplex at the 5'-end, followed by the stronger G-quadruplex at the 3'-end via various intermediates. Such a pecking order in unfolding well reflects the hierarchical nature of nucleic acid structures. With surgery-like precisions, we anticipate this NMS approach offers unprecedented perspective to decipher dynamic transitions in complex biomacromolecules.

摘要

由于生物分子中远端组分之间高阶相互作用的远程性质,三级结构的转变动力学通常过于复杂,难以用传统方法进行剖析。受机械制图中分解图的启发,在此,我们使用激光镊子将高阶DNA结构机械拆解为人端粒酶逆转录酶(hTERT)基因启动子中的两个组成性G-四链体。在点击化学偶联的辅助下,我们用两条双链DNA手柄夹住一个G-四链体,而让另一个单元保持自由状态。通过这些手柄进行的机械解折叠揭示了目标四链体在天然环境中的转变动力学,这被命名为天然机械分割(NMS)。对NMS构建体和解折叠的截短G-四链体构建体的解折叠进行比较,揭示了一种具有2千卡/摩尔稳定能的四链体-四链体相互作用。在将两个G-四链体一起进行机械靶向之后,在第一次解折叠步骤中观察到了相同的相互作用。然后,解折叠通过破坏5'端较弱的G-四链体进行,随后通过各种中间体破坏3'端较强的G-四链体。这种解折叠中的顺序很好地反映了核酸结构的层级性质。凭借类似手术的精度,我们预计这种NMS方法为解读复杂生物大分子中的动态转变提供了前所未有的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616f/4705664/91355a7634a7/gkv1326fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验