Santo-Domingo Jaime, Wiederkehr Andreas, De Marchi Umberto
Jaime Santo-Domingo, Andreas Wiederkehr, Umberto De Marchi, Mitochondrial Function, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland.
World J Biol Chem. 2015 Nov 26;6(4):310-23. doi: 10.4331/wjbc.v6.i4.310.
Mitochondria sense, shape and integrate signals, and thus function as central players in cellular signal transduction. Ca(2+) waves and redox reactions are two such intracellular signals modulated by mitochondria. Mitochondrial Ca(2+) transport is of utmost physio-pathological relevance with a strong impact on metabolism and cell fate. Despite its importance, the molecular nature of the proteins involved in mitochondrial Ca(2+) transport has been revealed only recently. Mitochondrial Ca(2+) promotes energy metabolism through the activation of matrix dehydrogenases and down-stream stimulation of the respiratory chain. These changes also alter the mitochondrial NAD(P)H/NAD(P)(+) ratio, but at the same time will increase reactive oxygen species (ROS) production. Reducing equivalents and ROS are having opposite effects on the mitochondrial redox state, which are hard to dissect. With the recent development of genetically encoded mitochondrial-targeted redox-sensitive sensors, real-time monitoring of matrix thiol redox dynamics has become possible. The discoveries of the molecular nature of mitochondrial transporters of Ca(2+) combined with the utilization of the novel redox sensors is shedding light on the complex relation between mitochondrial Ca(2+) and redox signals and their impact on cell function. In this review, we describe mitochondrial Ca(2+) handling, focusing on a number of newly identified proteins involved in mitochondrial Ca(2+) uptake and release. We further discuss our recent findings, revealing how mitochondrial Ca(2+) influences the matrix redox state. As a result, mitochondrial Ca(2+) is able to modulate the many mitochondrial redox-regulated processes linked to normal physiology and disease.
线粒体感知、塑造并整合信号,因此在细胞信号转导中起着核心作用。钙离子波和氧化还原反应就是由线粒体调节的两种细胞内信号。线粒体钙离子转运具有极其重要的生理病理意义,对代谢和细胞命运有重大影响。尽管其很重要,但参与线粒体钙离子转运的蛋白质的分子本质直到最近才被揭示。线粒体钙离子通过激活基质脱氢酶和对呼吸链的下游刺激来促进能量代谢。这些变化也会改变线粒体烟酰胺腺嘌呤二核苷酸磷酸(NAD(P)H)/烟酰胺腺嘌呤二核苷酸磷酸(NAD(P)+)的比率,但同时会增加活性氧(ROS)的产生。还原当量和ROS对线粒体氧化还原状态有相反的影响,这很难剖析。随着基因编码的线粒体靶向氧化还原敏感传感器的最新发展,实时监测基质硫醇氧化还原动力学已成为可能。线粒体钙离子转运蛋白分子本质的发现,结合新型氧化还原传感器的应用,正在揭示线粒体钙离子与氧化还原信号之间的复杂关系及其对细胞功能的影响。在这篇综述中,我们描述了线粒体钙离子的处理过程,重点关注一些新发现的参与线粒体钙离子摄取和释放的蛋白质。我们进一步讨论了我们最近的发现,揭示了线粒体钙离子如何影响基质氧化还原状态。因此,线粒体钙离子能够调节许多与正常生理和疾病相关的线粒体氧化还原调节过程。