Suppr超能文献

诱导偶极-偶极相互作用影响野生型和突变型淀粉样β肽的折叠途径。

Induced Dipole-Dipole Interactions Influence the Unfolding Pathways of Wild-Type and Mutant Amyloid β-Peptides.

作者信息

Lemkul Justin A, Huang Jing, MacKerell Alexander D

机构信息

Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States.

出版信息

J Phys Chem B. 2015 Dec 24;119(51):15574-82. doi: 10.1021/acs.jpcb.5b09978. Epub 2015 Dec 15.

Abstract

Amyloid-forming proteins undergo a structural transition from α-helical to disordered conformations and, ultimately, cross-β fibrils. The unfolding and aggregation of the amyloid β-peptide (Aβ) have been implicated in the development and progression of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). However, the events underlying the initial structural transition leading to the disease state remain unclear. Although most cases are sporadic, several genetic variants exist that alter the electrostatic properties of Aβ and lead to more rapid unfolding and more severe phenotypes. In the present study, the enhanced unfolding is shown to be due to the mutated side chains altering the local peptide-bond dipole moments leading to local destabilization of the α-helix, as determined from polarizable molecular dynamics (MD) simulations of wild-type (WT) Aβ fragments and several common mutations. The local perturbation of the helix then leads to progressive unwinding of the α-helix in a cooperative fashion due to decreases in adjacent (i ± 1) and hydrogen-bonded (i + 4) peptide-bond dipole moments. Side-chain dynamics, subsequent variations in dipole moments, and ultimately the response in the peptide-bond dipole moments are all modulated by solvent dielectric properties based on simulations in water versus ethanol. The polarizable simulation results, along with simulations using the additive CHARMM36 force field, further indicate that cooperativity due to the alignment of peptide bonds leading to enhanced dipole moments is a fundamental force in stabilizing α-helices.

摘要

形成淀粉样蛋白的蛋白质会经历从α螺旋构象到无序构象的结构转变,并最终形成交叉β纤维。淀粉样β肽(Aβ)的解折叠和聚集与阿尔茨海默病(AD)和脑淀粉样血管病(CAA)的发生和发展有关。然而,导致疾病状态的初始结构转变背后的事件仍不清楚。虽然大多数病例是散发性的,但存在几种遗传变异,这些变异会改变Aβ的静电性质,导致更快的解折叠和更严重的表型。在本研究中,从野生型(WT)Aβ片段和几种常见突变的可极化分子动力学(MD)模拟确定,增强的解折叠是由于突变的侧链改变了局部肽键偶极矩导致α螺旋局部不稳定。然后,由于相邻(i±1)和氢键(i + 4)肽键偶极矩的降低,螺旋的局部扰动以协同方式导致α螺旋逐渐解旋。基于在水和乙醇中的模拟,侧链动力学、随后偶极矩的变化以及最终肽键偶极矩的响应均受溶剂介电性质的调节。可极化模拟结果以及使用加性CHARMM36力场的模拟进一步表明,由于肽键排列导致偶极矩增强的协同作用是稳定α螺旋的一种基本力量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ce6/4690986/d5620be48612/jp-2015-09978k_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验