Suppr超能文献

使用压电陶瓷微致动器进行直接耳蜗内声学刺激。

Direct Intracochlear Acoustic Stimulation Using a PZT Microactuator.

作者信息

Luo Chuan, Omelchenko Irina, Manson Robert, Robbins Carol, Oesterle Elizabeth C, Cao Guo Zhong, Shen I Y, Hume Clifford R

机构信息

Department of Mechanical Engineering, University of Washington, Seattle, WA, USA Department of Precision Instruments, Tsinghua University, Beijing, China.

Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, USA.

出版信息

Trends Hear. 2015 Dec 1;19:2331216515616942. doi: 10.1177/2331216515616942.

Abstract

Combined electric and acoustic stimulation has proven to be an effective strategy to improve hearing in some cochlear implant users. We describe an acoustic microactuator to directly deliver stimuli to the perilymph in the scala tympani. The 800 µm by 800 µm actuator has a silicon diaphragm driven by a piezoelectric thin film (e.g., lead-zirconium-titanium oxide or PZT). This device could also be used as a component of a bimodal acoustic-electric electrode array. In the current study, we established a guinea pig model to test the actuator for its ability to deliver auditory signals to the cochlea in vivo. The actuator was placed through the round window of the cochlea. Auditory brainstem response (ABR) thresholds, peak latencies, and amplitude growth were calculated for an ear canal speaker versus the intracochlear actuator for tone burst stimuli at 4, 8, 16, and 24 kHz. An ABR was obtained after removal of the probe to assess loss of hearing related to the procedure. In some animals, the temporal bone was harvested for histologic analysis of cochlear damage. We show that the device is capable of stimulating ABRs in vivo with latencies and growth functions comparable to stimulation in the ear canal. Further experiments will be necessary to evaluate the efficiency and safety of this modality in long-term auditory stimulation and its ability to be integrated with conventional cochlear implant arrays.

摘要

联合电刺激和声刺激已被证明是改善一些人工耳蜗使用者听力的有效策略。我们描述了一种声学微致动器,用于直接将刺激传递到鼓阶中的外淋巴。这个800微米×800微米的致动器有一个由压电薄膜(如锆钛酸铅或PZT)驱动的硅膜片。该装置也可用作双模式声电电极阵列的一个组件。在当前的研究中,我们建立了一个豚鼠模型,以测试该致动器在体内将听觉信号传递到耳蜗的能力。致动器通过耳蜗的圆窗放置。针对耳道扬声器与耳蜗内致动器,计算了4、8、16和24千赫兹短纯音刺激的听觉脑干反应(ABR)阈值、峰潜伏期和振幅增长。移除探头后获得ABR,以评估与该操作相关的听力损失。在一些动物中,取下颞骨进行耳蜗损伤的组织学分析。我们表明,该装置能够在体内刺激ABR,其潜伏期和增长功能与耳道刺激相当。需要进一步的实验来评估这种模式在长期听觉刺激中的效率和安全性,以及它与传统人工耳蜗阵列集成的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/683a/4771031/222ef63a2dd9/10.1177_2331216515616942-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验