Caldara-Festin Grace, Jackson David R, Barajas Jesus F, Valentic Timothy R, Patel Avinash B, Aguilar Stephanie, Nguyen MyChi, Vo Michael, Khanna Avinash, Sasaki Eita, Liu Hung-Wen, Tsai Shiou-Chuan
Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697; Department of Chemistry, University of California, Irvine, CA 92697; Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697;
Division of Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, TX 78712; Department of Chemistry, University of Texas, Austin, TX 78712.
Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):E6844-51. doi: 10.1073/pnas.1512976112. Epub 2015 Dec 2.
Aromatic polyketides make up a large class of natural products with diverse bioactivity. During biosynthesis, linear poly-β-ketone intermediates are regiospecifically cyclized, yielding molecules with defined cyclization patterns that are crucial for polyketide bioactivity. The aromatase/cyclases (ARO/CYCs) are responsible for regiospecific cyclization of bacterial polyketides. The two most common cyclization patterns are C7-C12 and C9-C14 cyclizations. We have previously characterized three monodomain ARO/CYCs: ZhuI, TcmN, and WhiE. The last remaining uncharacterized class of ARO/CYCs is the di-domain ARO/CYCs, which catalyze C7-C12 cyclization and/or aromatization. Di-domain ARO/CYCs can further be separated into two subclasses: "nonreducing" ARO/CYCs, which act on nonreduced poly-β-ketones, and "reducing" ARO/CYCs, which act on cyclized C9 reduced poly-β-ketones. For years, the functional role of each domain in cyclization and aromatization for di-domain ARO/CYCs has remained a mystery. Here we present what is to our knowledge the first structural and functional analysis, along with an in-depth comparison, of the nonreducing (StfQ) and reducing (BexL) di-domain ARO/CYCs. This work completes the structural and functional characterization of mono- and di-domain ARO/CYCs in bacterial type II polyketide synthases and lays the groundwork for engineered biosynthesis of new bioactive polyketides.
芳香族聚酮化合物构成了一大类具有多样生物活性的天然产物。在生物合成过程中,线性聚-β-酮中间体进行区域特异性环化,产生具有特定环化模式的分子,这些模式对于聚酮化合物的生物活性至关重要。芳香化酶/环化酶(ARO/CYCs)负责细菌聚酮化合物的区域特异性环化。两种最常见的环化模式是C7-C12和C9-C14环化。我们之前已经对三种单结构域ARO/CYCs进行了表征:ZhuI、TcmN和WhiE。最后一类尚未表征的ARO/CYCs是双结构域ARO/CYCs,它催化C7-C12环化和/或芳构化。双结构域ARO/CYCs可进一步分为两个亚类:作用于未还原聚-β-酮的“非还原型”ARO/CYCs和作用于环化C9还原聚-β-酮的“还原型”ARO/CYCs。多年来,双结构域ARO/CYCs中每个结构域在环化和芳构化中的功能作用一直是个谜。在此,我们展示了据我们所知首次对非还原型(StfQ)和还原型(BexL)双结构域ARO/CYCs进行的结构和功能分析,以及深入比较。这项工作完成了细菌II型聚酮合酶中单结构域和双结构域ARO/CYCs的结构和功能表征,并为新型生物活性聚酮化合物的工程生物合成奠定了基础。