Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536.
Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536.
Proc Natl Acad Sci U S A. 2023 Feb 28;120(9):e2220468120. doi: 10.1073/pnas.2220468120. Epub 2023 Feb 21.
The enediynes are structurally characterized by a 1,5-diyne-3-ene motif within a 9- or 10-membered enediyne core. The anthraquinone-fused enediynes (AFEs) are a subclass of 10-membered enediynes that contain an anthraquinone moiety fused to the enediyne core as exemplified by dynemicins and tiancimycins. A conserved iterative type I polyketide synthase (PKSE) is known to initiate the biosynthesis of all enediyne cores, and evidence has recently been reported to suggest that the anthraquinone moiety also originates from the PKSE product. However, the identity of the PKSE product that is converted to the enediyne core or anthraquinone moiety has not been established. Here, we report the utilization of recombinant coexpressing various combinations of genes that encode a PKSE and a thioesterase (TE) from either 9- or 10-membered enediyne biosynthetic gene clusters to chemically complement Δ mutant strains of the producers of dynemicins and tiancimycins. Additionally, C-labeling experiments were performed to track the fate of the PKSE/TE product in the Δ mutants. These studies reveal that 1,3,5,7,9,11,13-pentadecaheptaene is the nascent, discrete product of the PKSE/TE that is converted to the enediyne core. Furthermore, a second molecule of 1,3,5,7,9,11,13-pentadecaheptaene is demonstrated to serve as the precursor of the anthraquinone moiety. The results establish a unified biosynthetic paradigm for AFEs, solidify an unprecedented biosynthetic logic for aromatic polyketides, and have implications for the biosynthesis of not only AFEs but all enediynes.
烯二炔类化合物的结构特征为 9-或 10-元烯二炔核内含有 1,5-二炔-3-烯基。蒽醌融合烯二炔类化合物(AFE)是 10 元烯二炔类化合物的一个亚类,其烯二炔核内融合有蒽醌部分,如 dynemicins 和 tiancimycins。已知保守的迭代型 I 聚酮合酶(PKSE)起始所有烯二炔类化合物的生物合成,最近有证据表明蒽醌部分也来源于 PKSE 产物。然而,将 PKSE 产物转化为烯二炔核或蒽醌部分的 PKSE 产物的身份尚未确定。在这里,我们报告了使用重组 共表达来自 9-或 10-元烯二炔生物合成基因簇的 PKSE 和硫酯酶(TE)的各种组合的基因,来化学互补 dynemicins 和 tiancimycins 的产生菌的 Δ突变株。此外,进行了 C 标记实验来追踪 PKSE/TE 产物在 Δ突变株中的命运。这些研究表明,1,3,5,7,9,11,13-十五碳庚五烯是 PKSE/TE 的初生离散产物,它被转化为烯二炔核。此外,第二个 1,3,5,7,9,11,13-十五碳庚五烯分子被证明是蒽醌部分的前体。该结果确立了 AFE 的统一生物合成范例,巩固了芳香聚酮的前所未有的生物合成逻辑,并对不仅 AFE 而且所有烯二炔类化合物的生物合成具有影响。