Center for Biosensors and Bioelectronics, The Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States.
School of Electrical, Computer and Energy Engineering, Arizona State University , Tempe, Arizona 85287, United States.
ACS Nano. 2016 Jan 26;10(1):845-52. doi: 10.1021/acsnano.5b05944. Epub 2015 Dec 8.
Antimicrobial susceptibility tests (ASTs) are important for confirming susceptibility to empirical antibiotics and detecting resistance in bacterial isolates. Currently, most ASTs performed in clinical microbiology laboratories are based on bacterial culturing, which take days to complete for slowly growing microorganisms. A faster AST will reduce morbidity and mortality rates and help healthcare providers administer narrow spectrum antibiotics at the earliest possible treatment stage. We report the development of a nonculture-based AST using a plasmonic imaging and tracking (PIT) technology. We track the motion of individual bacterial cells tethered to a surface with nanometer (nm) precision and correlate the phenotypic motion with bacterial metabolism and antibiotic action. We show that antibiotic action significantly slows down bacterial motion, which can be quantified for development of a rapid phenotypic-based AST.
抗菌药物敏感性测试(AST)对于确认经验性抗生素的敏感性和检测细菌分离物的耐药性非常重要。目前,临床微生物学实验室中进行的大多数 AST 都是基于细菌培养的,对于生长缓慢的微生物来说,这需要数天才能完成。更快的 AST 将降低发病率和死亡率,并帮助医疗保健提供者在最早的治疗阶段使用窄谱抗生素。我们报告了一种使用等离子体成像和跟踪(PIT)技术的非培养 AST 的开发。我们以纳米(nm)精度跟踪与表面连接的单个细菌细胞的运动,并将表型运动与细菌代谢和抗生素作用相关联。我们表明,抗生素作用会显著减缓细菌运动,这可以通过开发快速基于表型的 AST 来进行定量。