Suppr超能文献

回旋加速器生产用于正电子发射断层扫描成像的 (43)Sc。

Cyclotron production of (43)Sc for PET imaging.

机构信息

Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland.

Synektik S.A., Research and Development Center, Warsaw, Poland.

出版信息

EJNMMI Phys. 2015 Dec;2(1):33. doi: 10.1186/s40658-015-0136-x. Epub 2015 Dec 4.

Abstract

BACKGROUND

Recently, significant interest in (44)Sc as a tracer for positron emission tomography (PET) imaging has been observed. Unfortunately, the co-emission by (44)Sc of high-energy γ rays (E γ = 1157, 1499 keV) causes a dangerous increase of the radiation dose to the patients and clinical staff. However, it is possible to produce another radionuclide of scandium-(43)Sc-having properties similar to (44)Sc but is characterized by much lower energy of the concurrent gamma emissions. This work presents the production route of (43)Sc by α irradiation of natural calcium, its separation and purification processes, and the labeling of [DOTA,Tyr3] octreotate (DOTATATE) bioconjugate.

METHODS

Natural CaCO3 and enriched [(40)Ca]CaCO3 were irradiated with alpha particles for 1 h in an energy range of 14.8-30 MeV at a beam current of 0.5 or 0.25 μA. In order to find the optimum method for the separation of (43)Sc from irradiated calcium targets, three processes previously developed for (44)Sc were tested. Radiolabeling experiments were performed with DOTATATE radiobioconjugate, and the stability of the obtained (43)Sc-DOTATATE was tested in human serum.

RESULTS

Studies of (nat)CaCO3 target irradiation by alpha particles show that the optimum alpha particle energies are in the range of 24-27 MeV, giving 102 MBq/μA/h of (43)Sc radioactivity which creates the opportunity to produce several GBq of (43)Sc. The separation experiments performed indicate that, as with (44)Sc, due to the simplicity of the operations and because of the chemical purity of the (43)Sc obtained, the best separation process is when UTEVA resin is used. The DOTATATE conjugate was labeled by the obtained (43)Sc with a yield >98 % at elevated temperature.

CONCLUSIONS

Tens of GBq activities of (43)Sc of high radionuclidic purity can be obtainable for clinical applications by irradiation of natural calcium with an alpha beam.

摘要

背景

最近,人们对作为正电子发射断层扫描(PET)成像示踪剂的 44Sc 产生了浓厚的兴趣。不幸的是,44Sc 同时发射的高能γ射线(Eγ=1157、1499keV)会对患者和临床医护人员造成危险的辐射剂量增加。然而,通过对天然钙进行α辐照,可以产生另一种钪放射性核素- 43Sc,它具有与 44Sc 相似的性质,但同时γ射线的能量要低得多。本工作介绍了通过α辐照天然钙生产 43Sc 的途径、其分离和纯化过程以及 DOTA-Tyr3 奥曲肽(DOTATATE)生物缀合物的标记。

方法

用α粒子辐照天然 CaCO3 和富集的[(40)Ca]CaCO3,在 14.8-30MeV 的能量范围内,束流为 0.5 或 0.25μA,辐照 1 小时。为了找到从辐照钙靶中分离 43Sc 的最佳方法,测试了先前为 44Sc 开发的三种方法。用 DOTATATE 放射性生物缀合物进行放射性标记实验,并在人血清中测试所得 43Sc-DOTATATE 的稳定性。

结果

α粒子辐照(nat)CaCO3 靶的研究表明,最佳的α粒子能量范围在 24-27MeV 之间,产生 102MBq/μA/h 的 43Sc 放射性活度,为生产数 GBq 的 43Sc 提供了机会。进行的分离实验表明,与 44Sc 一样,由于操作简单,以及获得的 43Sc 的化学纯度高,最好的分离过程是使用 UTEVA 树脂。在高温下,用所得的 43Sc 对 DOTATATE 缀合物进行标记,产率>98%。

结论

通过用α束辐照天然钙,可获得数十 GBq 高放射性核纯度的 43Sc,可用于临床应用。

相似文献

1
Cyclotron production of (43)Sc for PET imaging.
EJNMMI Phys. 2015 Dec;2(1):33. doi: 10.1186/s40658-015-0136-x. Epub 2015 Dec 4.
3
Cyclotron production of (44)Sc: From bench to bedside.
Nucl Med Biol. 2015 Sep;42(9):745-51. doi: 10.1016/j.nucmedbio.2015.05.005. Epub 2015 May 30.
4
Cyclotron production of high purity (44m,44)Sc with deuterons from (44)CaCO3 targets.
Nucl Med Biol. 2015 Jun;42(6):524-9. doi: 10.1016/j.nucmedbio.2015.03.002. Epub 2015 Mar 11.
5
Improved procedures of Sc(OH)3 precipitation and UTEVA extraction for 44Sc separation.
Nucl Med Rev Cent East Eur. 2019;22(2):56-59. doi: 10.5603/NMR.a2019.0013.
6
Taking cyclotron Ga production to the next level: Expeditious solid target production of Ga for preparation of radiotracers.
Nucl Med Biol. 2020 Jan-Feb;80-81:24-31. doi: 10.1016/j.nucmedbio.2020.01.005. Epub 2020 Jan 22.
7
High-yield cyclotron production of Pb using a sealed Tl solid target.
Nucl Med Biol. 2023 Jan-Feb;116-117:108314. doi: 10.1016/j.nucmedbio.2023.108314. Epub 2023 Jan 13.
8
Sc production development by cyclotron irradiation of Ca.
J Radioanal Nucl Chem. 2017;313(2):429-434. doi: 10.1007/s10967-017-5321-z. Epub 2017 Jun 13.
9
New method for production of Tb via Dy by irradiation of Gd by medium energy alpha particles.
Nucl Med Biol. 2022 Mar-Apr;106-107:52-61. doi: 10.1016/j.nucmedbio.2021.12.004. Epub 2021 Dec 30.

引用本文的文献

3
Data reconciliation connected to guard bands to set specification limits related to risk assessment for radiopharmaceutical activity.
Heliyon. 2023 Nov 28;9(12):e22992. doi: 10.1016/j.heliyon.2023.e22992. eCollection 2023 Dec.
4
Scandium Radioisotopes-Toward New Targets and Imaging Modalities.
Molecules. 2023 Nov 19;28(22):7668. doi: 10.3390/molecules28227668.
5
Scandium-44: Diagnostic Feasibility in Tumor-Related Angiogenesis.
Int J Mol Sci. 2023 Apr 17;24(8):7400. doi: 10.3390/ijms24087400.
7
Cutting edge rare earth radiometals: prospects for cancer theranostics.
EJNMMI Radiopharm Chem. 2022 Aug 26;7(1):21. doi: 10.1186/s41181-022-00173-0.
8
Advances in PSMA theranostics.
Transl Oncol. 2022 Aug;22:101450. doi: 10.1016/j.tranon.2022.101450. Epub 2022 May 18.
10
Production of scandium radionuclides for theranostic applications: towards standardization of quality requirements.
EJNMMI Radiopharm Chem. 2021 May 25;6(1):19. doi: 10.1186/s41181-021-00131-2.

本文引用的文献

1
Production of scandium-44 m and scandium-44 g with deuterons on calcium-44: cross section measurements and production yield calculations.
Phys Med Biol. 2015 Sep 7;60(17):6847-64. doi: 10.1088/0031-9155/60/17/6847. Epub 2015 Aug 24.
2
Cyclotron production of (44)Sc: From bench to bedside.
Nucl Med Biol. 2015 Sep;42(9):745-51. doi: 10.1016/j.nucmedbio.2015.05.005. Epub 2015 May 30.
3
Separation of cyclotron-produced Sc from a natural calcium target using a dipentyl pentylphosphonate functionalized extraction resin.
Appl Radiat Isot. 2015 Jan;95:23-29. doi: 10.1016/j.apradiso.2014.09.020. Epub 2014 Oct 8.
6
Cyclotron produced ⁴⁴gSc from natural calcium.
Appl Radiat Isot. 2012 Aug;70(8):1526-30. doi: 10.1016/j.apradiso.2012.04.030. Epub 2012 May 24.
7
Scandium-44: benefits of a long-lived PET radionuclide available from the (44)Ti/(44)Sc generator system.
Curr Radiopharm. 2012 Jul;5(3):187-201. doi: 10.2174/1874471011205030187.
8
Somatostatin receptors as targets for nuclear medicine imaging and radionuclide treatment.
J Nucl Med. 2011 Jun;52(6):841-4. doi: 10.2967/jnumed.110.084236. Epub 2011 May 13.
9
Macrocyclic complexes of scandium radionuclides as precursors for diagnostic and therapeutic radiopharmaceuticals.
J Inorg Biochem. 2011 Feb;105(2):313-20. doi: 10.1016/j.jinorgbio.2010.11.003. Epub 2010 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验