Suppr超能文献

单细胞基因组学助力从温泉宏基因组中对候选菌门EM19基因组进行读段分箱

Single-Cell-Genomics-Facilitated Read Binning of Candidate Phylum EM19 Genomes from Geothermal Spring Metagenomes.

作者信息

Becraft Eric D, Dodsworth Jeremy A, Murugapiran Senthil K, Ohlsson J Ingemar, Briggs Brandon R, Kanbar Jad, De Vlaminck Iwijn, Quake Stephen R, Dong Hailiang, Hedlund Brian P, Swingley Wesley D

机构信息

Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA.

Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA.

出版信息

Appl Environ Microbiol. 2015 Dec 4;82(4):992-1003. doi: 10.1128/AEM.03140-15. Print 2016 Feb 15.

Abstract

The vast majority of microbial life remains uncatalogued due to the inability to cultivate these organisms in the laboratory. This "microbial dark matter" represents a substantial portion of the tree of life and of the populations that contribute to chemical cycling in many ecosystems. In this work, we leveraged an existing single-cell genomic data set representing the candidate bacterial phylum "Calescamantes" (EM19) to calibrate machine learning algorithms and define metagenomic bins directly from pyrosequencing reads derived from Great Boiling Spring in the U.S. Great Basin. Compared to other assembly-based methods, taxonomic binning with a read-based machine learning approach yielded final assemblies with the highest predicted genome completeness of any method tested. Read-first binning subsequently was used to extract Calescamantes bins from all metagenomes with abundant Calescamantes populations, including metagenomes from Octopus Spring and Bison Pool in Yellowstone National Park and Gongxiaoshe Spring in Yunnan Province, China. Metabolic reconstruction suggests that Calescamantes are heterotrophic, facultative anaerobes, which can utilize oxidized nitrogen sources as terminal electron acceptors for respiration in the absence of oxygen and use proteins as their primary carbon source. Despite their phylogenetic divergence, the geographically separate Calescamantes populations were highly similar in their predicted metabolic capabilities and core gene content, respiring O2, or oxidized nitrogen species for energy conservation in distant but chemically similar hot springs.

摘要

由于无法在实验室中培养这些微生物,绝大多数微生物仍未被分类编目。这种“微生物暗物质”在生命之树以及许多生态系统中参与化学循环的种群中占了很大一部分。在这项研究中,我们利用了一个现有的单细胞基因组数据集,该数据集代表候选细菌门“Calescamantes”(EM19),来校准机器学习算法,并直接从美国大盆地大沸腾泉的焦磷酸测序读数中定义宏基因组 bins。与其他基于组装的方法相比,使用基于读数的机器学习方法进行分类分箱得到的最终组装结果,在所有测试方法中预测的基因组完整性最高。随后,基于读数的优先分箱法被用于从所有含有丰富Calescamantes种群的宏基因组中提取Calescamantes bins,这些宏基因组包括黄石国家公园章鱼泉和野牛池以及中国云南省公肖舍泉的宏基因组。代谢重建表明,Calescamantes是异养兼性厌氧菌,在无氧条件下,它们可以利用氧化态氮源作为呼吸作用的终端电子受体,并以蛋白质作为主要碳源。尽管它们在系统发育上存在差异,但地理上分离的Calescamantes种群在预测的代谢能力和核心基因含量方面高度相似,在遥远但化学性质相似的温泉中通过呼吸氧气或氧化态氮物种来保存能量。

相似文献

1
Single-Cell-Genomics-Facilitated Read Binning of Candidate Phylum EM19 Genomes from Geothermal Spring Metagenomes.
Appl Environ Microbiol. 2015 Dec 4;82(4):992-1003. doi: 10.1128/AEM.03140-15. Print 2016 Feb 15.
3
Novel, Deep-Branching Heterotrophic Bacterial Populations Recovered from Thermal Spring Metagenomes.
Front Microbiol. 2016 Mar 15;7:304. doi: 10.3389/fmicb.2016.00304. eCollection 2016.
4
Evaluating metagenomics tools for genome binning with real metagenomic datasets and CAMI datasets.
BMC Bioinformatics. 2020 Jul 28;21(1):334. doi: 10.1186/s12859-020-03667-3.
5
Optimizing and evaluating the reconstruction of Metagenome-assembled microbial genomes.
BMC Genomics. 2017 Nov 28;18(1):915. doi: 10.1186/s12864-017-4294-1.
6
Coordinating environmental genomics and geochemistry reveals metabolic transitions in a hot spring ecosystem.
PLoS One. 2012;7(6):e38108. doi: 10.1371/journal.pone.0038108. Epub 2012 Jun 4.
8
Moleculo Long-Read Sequencing Facilitates Assembly and Genomic Binning from Complex Soil Metagenomes.
mSystems. 2016 Jun 28;1(3). doi: 10.1128/mSystems.00045-16. eCollection 2016 May-Jun.
10

引用本文的文献

2
Functional characterization of prokaryotic dark matter: the road so far and what lies ahead.
Curr Res Microb Sci. 2022 Aug 7;3:100159. doi: 10.1016/j.crmicr.2022.100159. eCollection 2022.
3
A network approach to elucidate and prioritize microbial dark matter in microbial communities.
ISME J. 2021 Jan;15(1):228-244. doi: 10.1038/s41396-020-00777-x. Epub 2020 Sep 22.
5
Extremophilic nitrite-oxidizing Chloroflexi from Yellowstone hot springs.
ISME J. 2020 Feb;14(2):364-379. doi: 10.1038/s41396-019-0530-9. Epub 2019 Oct 17.
6
Single cell ecology.
Philos Trans R Soc Lond B Biol Sci. 2019 Nov 25;374(1786):20190076. doi: 10.1098/rstb.2019.0076. Epub 2019 Oct 7.
7
Current and Promising Approaches to Identify Horizontal Gene Transfer Events in Metagenomes.
Genome Biol Evol. 2019 Oct 1;11(10):2750-2766. doi: 10.1093/gbe/evz184.
10
Single-cell metagenomics: challenges and applications.
Protein Cell. 2018 May;9(5):501-510. doi: 10.1007/s13238-018-0544-5. Epub 2018 Apr 25.

本文引用的文献

1
MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets.
Bioinformatics. 2016 Feb 15;32(4):605-7. doi: 10.1093/bioinformatics/btv638. Epub 2015 Oct 29.
2
MBBC: an efficient approach for metagenomic binning based on clustering.
BMC Bioinformatics. 2015 Feb 5;16:36. doi: 10.1186/s12859-015-0473-8.
3
Single cell biotechnology to shed a light on biological 'dark matter' in nature.
Microb Biotechnol. 2015 Jan;8(1):15-6. doi: 10.1111/1751-7915.12249.
4
Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor.
ISME J. 2015 Aug;9(8):1710-22. doi: 10.1038/ismej.2014.256. Epub 2015 Jan 23.
5
Illuminating microbial dark matter in meromictic Sakinaw Lake.
Appl Environ Microbiol. 2014 Nov;80(21):6807-18. doi: 10.1128/AEM.01774-14. Epub 2014 Aug 29.
7
Unveiling viral-host interactions within the 'microbial dark matter'.
Nat Commun. 2014 Aug 14;5:4542. doi: 10.1038/ncomms5542.
9
Impact of single-cell genomics and metagenomics on the emerging view of extremophile "microbial dark matter".
Extremophiles. 2014 Sep;18(5):865-75. doi: 10.1007/s00792-014-0664-7. Epub 2014 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验