Suppr超能文献

多网络中基因群落的检测揭示癌症驱动因素。

Detection of gene communities in multi-networks reveals cancer drivers.

作者信息

Cantini Laura, Medico Enzo, Fortunato Santo, Caselle Michele

机构信息

Università di Torino, Department of Oncology, Candiolo, Italy.

Politecnico di Torino, Department of Control and Computer Engineering, Torino, Italy.

出版信息

Sci Rep. 2015 Dec 7;5:17386. doi: 10.1038/srep17386.

Abstract

We propose a new multi-network-based strategy to integrate different layers of genomic information and use them in a coordinate way to identify driving cancer genes. The multi-networks that we consider combine transcription factor co-targeting, microRNA co-targeting, protein-protein interaction and gene co-expression networks. The rationale behind this choice is that gene co-expression and protein-protein interactions require a tight coregulation of the partners and that such a fine tuned regulation can be obtained only combining both the transcriptional and post-transcriptional layers of regulation. To extract the relevant biological information from the multi-network we studied its partition into communities. To this end we applied a consensus clustering algorithm based on state of art community detection methods. Even if our procedure is valid in principle for any pathology in this work we concentrate on gastric, lung, pancreas and colorectal cancer and identified from the enrichment analysis of the multi-network communities a set of candidate driver cancer genes. Some of them were already known oncogenes while a few are new. The combination of the different layers of information allowed us to extract from the multi-network indications on the regulatory pattern and functional role of both the already known and the new candidate driver genes.

摘要

我们提出了一种基于多网络的新策略,以整合不同层次的基因组信息,并以协同方式利用这些信息来识别驱动癌症的基因。我们所考虑的多网络结合了转录因子共靶向、微小RNA共靶向、蛋白质-蛋白质相互作用和基因共表达网络。做出这种选择的基本原理是,基因共表达和蛋白质-蛋白质相互作用需要伙伴之间紧密的共调控,而只有结合转录和转录后调控层才能实现这种精细调控。为了从多网络中提取相关生物信息,我们研究了其划分为群落的情况。为此,我们应用了一种基于先进群落检测方法的共识聚类算法。即使我们的方法原则上对任何病理学都有效,但在这项工作中,我们专注于胃癌、肺癌、胰腺癌和结直肠癌,并通过对多网络群落的富集分析确定了一组候选驱动癌症基因。其中一些已经是已知的癌基因,而有少数是新的。不同层次信息的结合使我们能够从多网络中提取关于已知和新候选驱动基因的调控模式和功能作用的线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5a9/4671005/e08297263236/srep17386-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验