Suppr超能文献

亚原子:一种基于子图的多组学聚类框架,用于分析集成的多边缘网络。

SUBATOMIC: a SUbgraph BAsed mulTi-OMIcs clustering framework to analyze integrated multi-edge networks.

机构信息

Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium.

Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.

出版信息

BMC Bioinformatics. 2022 Sep 5;23(1):363. doi: 10.1186/s12859-022-04908-3.

Abstract

BACKGROUND

Representing the complex interplay between different types of biomolecules across different omics layers in multi-omics networks bears great potential to gain a deep mechanistic understanding of gene regulation and disease. However, multi-omics networks easily grow into giant hairball structures that hamper biological interpretation. Module detection methods can decompose these networks into smaller interpretable modules. However, these methods are not adapted to deal with multi-omics data nor consider topological features. When deriving very large modules or ignoring the broader network context, interpretability remains limited. To address these issues, we developed a SUbgraph BAsed mulTi-OMIcs Clustering framework (SUBATOMIC), which infers small and interpretable modules with a specific topology while keeping track of connections to other modules and regulators.

RESULTS

SUBATOMIC groups specific molecular interactions in composite network subgraphs of two and three nodes and clusters them into topological modules. These are functionally annotated, visualized and overlaid with expression profiles to go from static to dynamic modules. To preserve the larger network context, SUBATOMIC investigates statistically the connections in between modules as well as between modules and regulators such as miRNAs and transcription factors. We applied SUBATOMIC to analyze a composite Homo sapiens network containing transcription factor-target gene, miRNA-target gene, protein-protein, homologous and co-functional interactions from different databases. We derived and annotated 5586 modules with diverse topological, functional and regulatory properties. We created novel functional hypotheses for unannotated genes. Furthermore, we integrated modules with condition specific expression data to study the influence of hypoxia in three cancer cell lines. We developed two prioritization strategies to identify the most relevant modules in specific biological contexts: one considering GO term enrichments and one calculating an activity score reflecting the degree of differential expression. Both strategies yielded modules specifically reacting to low oxygen levels.

CONCLUSIONS

We developed the SUBATOMIC framework that generates interpretable modules from integrated multi-omics networks and applied it to hypoxia in cancer. SUBATOMIC can infer and contextualize modules, explore condition or disease specific modules, identify regulators and functionally related modules, and derive novel gene functions for uncharacterized genes. The software is available at https://github.com/CBIGR/SUBATOMIC .

摘要

背景

在多组学网络中,代表不同组学层面上不同类型生物分子之间的复杂相互作用,具有深入了解基因调控和疾病的潜在能力。然而,多组学网络很容易变成巨大的毛发球结构,从而阻碍生物解释。模块检测方法可以将这些网络分解为更小的可解释模块。然而,这些方法并不适应于处理多组学数据,也不考虑拓扑特征。在提取非常大的模块或忽略更广泛的网络背景时,可解释性仍然有限。为了解决这些问题,我们开发了一种基于子图的多组学聚类框架(SUBATOMIC),该框架在跟踪与其他模块和调节剂的连接的同时,推断具有特定拓扑的小而可解释的模块。

结果

SUBATOMIC 将复合网络子图中的特定分子相互作用分组为两个和三个节点,并将其聚类为拓扑模块。这些模块进行功能注释、可视化并与表达谱叠加,从静态模块转变为动态模块。为了保留更大的网络背景,SUBATOMIC 还统计研究了模块之间以及模块与调节剂(如 miRNA 和转录因子)之间的连接。我们将 SUBATOMIC 应用于分析包含转录因子-靶基因、miRNA-靶基因、蛋白质-蛋白质、同源和共功能相互作用的复合 Homo sapiens 网络,这些相互作用来自不同的数据库。我们得出并注释了具有不同拓扑、功能和调节特性的 5586 个模块。我们为未注释的基因提出了新的功能假设。此外,我们还将模块与特定条件下的表达数据集成,以研究三种癌细胞系中缺氧的影响。我们开发了两种优先级策略来识别特定生物背景下最相关的模块:一种考虑 GO 术语富集,另一种计算反映差异表达程度的活性得分。这两种策略都产生了专门对低氧水平反应的模块。

结论

我们开发了 SUBATOMIC 框架,该框架可以从整合的多组学网络中生成可解释的模块,并将其应用于癌症中的缺氧。SUBATOMIC 可以推断和情境化模块、探索条件或疾病特异性模块、识别调节剂和功能相关模块,并为未表征的基因推导新的基因功能。该软件可在 https://github.com/CBIGR/SUBATOMIC 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83fa/9442970/6ddc67e44ba0/12859_2022_4908_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验