García-Lara Jorge, Weihs Felix, Ma Xing, Walker Lucas, Chaudhuri Roy R, Kasturiarachchi Jagath, Crossley Howard, Golestanian Ramin, Foster Simon J
The Krebs Institute, Department of Molecular Biology and Microbiology, University of Sheffield, Sheffield S10 2TN, United Kingdom;
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, United Kingdom
Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15725-30. doi: 10.1073/pnas.1509557112. Epub 2015 Dec 7.
All life demands the temporal and spatial control of essential biological functions. In bacteria, the recent discovery of coordinating elements provides a framework to begin to explain cell growth and division. Here we present the discovery of a supramolecular structure in the membrane of the coccal bacterium Staphylococcus aureus, which leads to the formation of a large-scale pattern across the entire cell body; this has been unveiled by studying the distribution of essential proteins involved in lipid metabolism (PlsY and CdsA). The organization is found to require MreD, which determines morphology in rod-shaped cells. The distribution of protein complexes can be explained as a spontaneous pattern formation arising from the competition between the energy cost of bending that they impose on the membrane, their entropy of mixing, and the geometric constraints in the system. Our results provide evidence for the existence of a self-organized and nonpercolating molecular scaffold involving MreD as an organizer for optimal cell function and growth based on the intrinsic self-assembling properties of biological molecules.
所有生命都需要对基本生物学功能进行时空控制。在细菌中,最近对协调元件的发现为开始解释细胞生长和分裂提供了一个框架。在此,我们展示了在球菌金黄色葡萄球菌膜中发现的一种超分子结构,该结构导致在整个细胞体上形成大规模模式;这是通过研究参与脂质代谢的必需蛋白(PlsY和CdsA)的分布而揭示的。发现这种组织需要MreD,MreD决定杆状细胞的形态。蛋白质复合物的分布可以解释为由它们施加在膜上的弯曲能量成本、它们的混合熵以及系统中的几何约束之间的竞争所产生的自发模式形成。我们的结果为存在一种自组织且非渗透的分子支架提供了证据,该支架涉及MreD作为组织者,基于生物分子的内在自组装特性实现最佳细胞功能和生长。