Suppr超能文献

用于纵向项目分析的自回归增长模型。

An autoregressive growth model for longitudinal item analysis.

作者信息

Jeon Minjeong, Rabe-Hesketh Sophia

机构信息

Department of Psychology, Ohio State University, 1827 Neil Avenue, Columbus, OH, 43210, USA.

University of California, Berkeley, Berkeley, USA.

出版信息

Psychometrika. 2016 Sep;81(3):830-50. doi: 10.1007/s11336-015-9489-2. Epub 2015 Dec 8.

Abstract

A first-order autoregressive growth model is proposed for longitudinal binary item analysis where responses to the same items are conditionally dependent across time given the latent traits. Specifically, the item response probability for a given item at a given time depends on the latent trait as well as the response to the same item at the previous time, or the lagged response. An initial conditions problem arises because there is no lagged response at the initial time period. We handle this problem by adapting solutions proposed for dynamic models in panel data econometrics. Asymptotic and finite sample power for the autoregressive parameters are investigated. The consequences of ignoring local dependence and the initial conditions problem are also examined for data simulated from a first-order autoregressive growth model. The proposed methods are applied to longitudinal data on Korean students' self-esteem.

摘要

本文提出了一种用于纵向二元项目分析的一阶自回归增长模型,其中在给定潜在特质的情况下,对相同项目的回答在时间上是条件依赖的。具体而言,给定时间点上给定项目的项目反应概率取决于潜在特质以及上一时刻对同一项目的回答,即滞后反应。由于在初始时间段没有滞后反应,因此出现了初始条件问题。我们通过采用面板数据计量经济学中为动态模型提出的解决方案来处理这个问题。研究了自回归参数的渐近和有限样本功效。对于从一阶自回归增长模型模拟的数据,还研究了忽略局部依赖性和初始条件问题的后果。所提出的方法应用于韩国学生自尊的纵向数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验