Suppr超能文献

建模密集多项时间序列眼动追踪数据:基于动态树的项目反应模型。

Modeling Intensive Polytomous Time-Series Eye-Tracking Data: A Dynamic Tree-Based Item Response Model.

机构信息

Vanderbilt University, Nashville, USA.

The Ohio State University, Columbus, USA.

出版信息

Psychometrika. 2020 Mar;85(1):154-184. doi: 10.1007/s11336-020-09694-6. Epub 2020 Feb 21.

Abstract

This paper presents a dynamic tree-based item response (IRTree) model as a novel extension of the autoregressive generalized linear mixed effect model (dynamic GLMM). We illustrate the unique utility of the dynamic IRTree model in its capability of modeling differentiated processes indicated by intensive polytomous time-series eye-tracking data. The dynamic IRTree was inspired by but is distinct from the dynamic GLMM which was previously presented by Cho, Brown-Schmidt, and Lee (Psychometrika 83(3):751-771, 2018). Unlike the dynamic IRTree, the dynamic GLMM is suitable for modeling intensive binary time-series eye-tracking data to identify visual attention to a single interest area over all other possible fixation locations. The dynamic IRTree model is a general modeling framework which can be used to model change processes (trend and autocorrelation) and which allows for decomposing data into various sources of heterogeneity. The dynamic IRTree model was illustrated using an experimental study that employed the visual-world eye-tracking technique. The results of a simulation study showed that parameter recovery of the model was satisfactory and that ignoring trend and autoregressive effects resulted in biased estimates of experimental condition effects in the same conditions found in the empirical study.

摘要

本文提出了一种基于动态树的项目反应(IRTree)模型,作为自回归广义线性混合效应模型(动态 GLMM)的新扩展。我们通过实例说明了动态 IRTree 模型在建模密集多项时间序列眼动追踪数据所指示的差异化过程方面的独特效用。动态 IRTree 受到但与之前由 Cho、Brown-Schmidt 和 Lee(Psychometrika 83(3):751-771, 2018)提出的动态 GLMM 不同。与动态 IRTree 不同,动态 GLMM 适合对密集的二元时间序列眼动追踪数据进行建模,以识别对单一兴趣区域的视觉关注,而不是其他所有可能的注视位置。动态 IRTree 模型是一个通用的建模框架,可用于建模变化过程(趋势和自相关),并允许将数据分解为各种异质性来源。我们使用采用视觉世界眼动追踪技术的实验研究说明了动态 IRTree 模型。模拟研究的结果表明,该模型的参数恢复令人满意,并且忽略趋势和自回归效应会导致在与实证研究相同的条件下对实验条件效应的估计存在偏差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验