Rotnitzky A, Wypij D
Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115.
Biometrics. 1994 Dec;50(4):1163-70.
It is well known that many standard analyses, including maximum likelihood estimation and the generalized estimating equation approach (Liang and Zeger, 1986, Biometrika 73, 13-22) can result in biased estimation when there are missing observations. In such cases it is of interest to calculate the magnitude of the bias incurred under specific assumptions about the process generating the full data and the nonresponse mechanism. In this paper we give a condition that identifies the limit in probability of estimators that are solutions of estimating equations computed from the incomplete data. With discrete data, this condition suggests a simple algorithm to compute the asymptotic bias of these estimators that can be easily implemented with existing statistical software. We illustrate our approach with asthma prevalence data in children.
众所周知,当存在缺失观测值时,许多标准分析方法,包括最大似然估计和广义估计方程方法(Liang和Zeger,1986年,《生物统计学》73卷,第13 - 22页)可能会导致有偏估计。在这种情况下,计算在关于生成完整数据的过程和无应答机制的特定假设下所产生偏差的大小是很有意义的。在本文中,我们给出了一个条件,该条件确定了从不完整数据计算得到的估计方程的解的估计量在概率上的极限。对于离散数据,该条件提出了一种简单的算法来计算这些估计量的渐近偏差,并且可以很容易地用现有的统计软件来实现。我们用儿童哮喘患病率数据来说明我们的方法。