Suppr超能文献

基于患者的完整传导气道模型的开发与分析

Development and Analysis of Patient-Based Complete Conducting Airways Models.

作者信息

Bordas Rafel, Lefevre Christophe, Veeckmans Bart, Pitt-Francis Joe, Fetita Catalin, Brightling Christopher E, Kay David, Siddiqui Salman, Burrowes Kelly S

机构信息

Computational Biology, Department of Computer Science, University of Oxford, Oxford, United Kingdom.

ARTEMIS Department, CNRS UMR 8145, Telecom SudParis, Institut Mines-Telecom, Paris, France.

出版信息

PLoS One. 2015 Dec 11;10(12):e0144105. doi: 10.1371/journal.pone.0144105. eCollection 2015.

Abstract

The analysis of high-resolution computed tomography (CT) images of the lung is dependent on inter-subject differences in airway geometry. The application of computational models in understanding the significance of these differences has previously been shown to be a useful tool in biomedical research. Studies using image-based geometries alone are limited to the analysis of the central airways, down to generation 6-10, as other airways are not visible on high-resolution CT. However, airways distal to this, often termed the small airways, are known to play a crucial role in common airway diseases such as asthma and chronic obstructive pulmonary disease (COPD). Other studies have incorporated an algorithmic approach to extrapolate CT segmented airways in order to obtain a complete conducting airway tree down to the level of the acinus. These models have typically been used for mechanistic studies, but also have the potential to be used in a patient-specific setting. In the current study, an image analysis and modelling pipeline was developed and applied to a number of healthy (n = 11) and asthmatic (n = 24) CT patient scans to produce complete patient-based airway models to the acinar level (mean terminal generation 15.8 ± 0.47). The resulting models are analysed in terms of morphometric properties and seen to be consistent with previous work. A number of global clinical lung function measures are compared to resistance predictions in the models to assess their suitability for use in a patient-specific setting. We show a significant difference (p < 0.01) in airways resistance at all tested flow rates in complete airway trees built using CT data from severe asthmatics (GINA 3-5) versus healthy subjects. Further, model predictions of airways resistance at all flow rates are shown to correlate with patient forced expiratory volume in one second (FEV1) (Spearman ρ = -0.65, p < 0.001) and, at low flow rates (0.00017 L/s), FEV1 over forced vital capacity (FEV1/FVC) (ρ = -0.58, p < 0.001). We conclude that the pipeline and anatomical models can be used directly in mechanistic modelling studies and can form the basis for future patient-based modelling studies.

摘要

肺部高分辨率计算机断层扫描(CT)图像的分析依赖于气道几何结构的个体间差异。计算模型在理解这些差异的重要性方面的应用,此前已被证明是生物医学研究中的一种有用工具。仅使用基于图像的几何结构的研究仅限于对中央气道直至第6 - 10级分支的分析,因为其他气道在高分辨率CT上不可见。然而,在此远端的气道,通常称为小气道,已知在哮喘和慢性阻塞性肺疾病(COPD)等常见气道疾病中起关键作用。其他研究采用了算法方法来外推CT分割的气道,以获得完整的传导气道树直至腺泡水平。这些模型通常用于机理研究,但也有潜力用于特定患者的情况。在当前研究中,开发了一种图像分析和建模流程,并将其应用于一些健康(n = 11)和哮喘(n = 24)患者的CT扫描,以生成直至腺泡水平(平均终末分支15.8 ± 0.47)的基于患者的完整气道模型。对所得模型进行形态计量学特性分析,并发现其与先前的工作一致。将一些全球临床肺功能指标与模型中的阻力预测值进行比较,以评估它们在特定患者情况下的适用性。我们发现,使用重度哮喘患者(GINA 3 - 5级)与健康受试者的CT数据构建的完整气道树在所有测试流速下的气道阻力存在显著差异(p < 0.01)。此外,所有流速下气道阻力的模型预测值与患者一秒用力呼气容积(FEV1)相关(Spearman ρ = -0.65,p < 0.001),在低流速(0.00017 L/s)下,与FEV1占用力肺活量的比值(FEV₁/FVC)相关(ρ = -0.58,p < 0.001)。我们得出结论,该流程和解剖模型可直接用于机理建模研究,并可为未来基于患者的建模研究奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd8e/4684353/9710beb3ff83/pone.0144105.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验