Suppr超能文献

通过从相应吸气扫描进行信息传递,在呼气胸部CT扫描中实现气道树重建。

Airway tree reconstruction in expiration chest CT scans facilitated by information transfer from corresponding inspiration scans.

作者信息

Bauer Christian, Eberlein Michael, Beichel Reinhard R

机构信息

Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, Iowa 52242 and The Iowa Institute for Biomedical Imaging, The University of Iowa, Iowa City, Iowa 52242.

Department of Internal Medicine, The University of Iowa Carver College of Medicine, Iowa City, Iowa 52242.

出版信息

Med Phys. 2016 Mar;43(3):1312-23. doi: 10.1118/1.4941692.

Abstract

PURPOSE

Analysis and comparison of airways imaged in pairs of inspiration and expiration lung CT scans provides important information for quantitative assessment of lung diseases like chronic obstructive pulmonary disease. However, airway tree reconstruction in expiration CT scans is a challenging problem. Typically, only a low number of airway branches are found in expiration scans, compared to inspiration scans. To detect more airways in expiration CT scans, the authors introduce a novel airway reconstruction approach and assess its performance.

METHODS

The method requires a pair of inspiration and expiration CT scans and utilizes information from the inspiration scan to facilitate reconstructing the airway tree in the expiration lung CT scan. First, an initial airway tree (high confidence) and airway candidates (limited confidence) are reconstructed in the expiration scan by utilizing a 3D graph-based reconstruction method. Then, the 3D airway tree is reconstructed in the inspiration scan. Second, correspondences between expiration and inspiration tree structures are identified by utilizing a novel hierarchical tree matching algorithm that utilizes a local CT image-based similarity criterion. Third, the tree information from the inspiration airway tree is used to select expiration candidates, resulting in the final expiration tree structure. The approach was evaluated on a diverse set of 40 scan pairs and compared to the baseline method, which utilizes only the expiration CT scan.

RESULTS

The proposed method produced a significant (p < 0.05) increase in airway tree length by 13.35 cm, on average, which represents an 11.21% increase relative to the baseline result using only the expiration CT scan. A detailed analysis of all additionally identified airways resulted in a true and false positive rate of 94.8% and 5.2%, respectively. The true positive rate was found to be significantly higher than the false positive rate (p < 0.05).

CONCLUSIONS

The proposed method allowed increasing the number of found airways in expiration scans significantly. In addition, the algorithm establishes correspondence between inspiration and expiration airway trees, which can facilitate label transfer between airway trees and quantitative assessment of change in airways. The approach can be adapted to facilitate airway reconstruction in several longitudinal lung CT scans by means of mutual information transfer.

摘要

目的

对吸气和呼气肺部CT扫描图像中的气道进行分析和比较,可为慢性阻塞性肺疾病等肺部疾病的定量评估提供重要信息。然而,呼气CT扫描中的气道树重建是一个具有挑战性的问题。通常,与吸气扫描相比,呼气扫描中发现的气道分支数量较少。为了在呼气CT扫描中检测到更多气道,作者引入了一种新颖的气道重建方法并评估其性能。

方法

该方法需要一对吸气和呼气CT扫描,并利用吸气扫描的信息来辅助重建呼气肺部CT扫描中的气道树。首先,通过使用基于3D图形的重建方法在呼气扫描中重建初始气道树(高置信度)和气道候选(有限置信度)。然后,在吸气扫描中重建3D气道树。其次,利用一种新颖的分层树匹配算法,通过基于局部CT图像的相似性标准来识别呼气和吸气树结构之间的对应关系。第三,利用吸气气道树的树信息来选择呼气候选,从而得到最终的呼气树结构。该方法在40组不同的扫描对上进行了评估,并与仅使用呼气CT扫描的基线方法进行了比较。

结果

所提出的方法使气道树长度平均显著增加(p < 0.05),增加了13.35 cm,相对于仅使用呼气CT扫描的基线结果增加了11.21%。对所有额外识别出的气道进行详细分析,真阳性率和假阳性率分别为94.8%和5.2%。发现真阳性率显著高于假阳性率(p < 0.05)。

结论

所提出的方法显著增加了呼气扫描中发现的气道数量。此外,该算法建立了吸气和呼气气道树之间的对应关系,这有助于气道树之间的标签转移和气道变化的定量评估。该方法可通过互信息传递进行调整,以促进在多个纵向肺部CT扫描中的气道重建。

相似文献

10
Tracheal collapsibility in adults is dynamic over time.成人的气管塌陷是随时间动态变化的。
Respir Med. 2019 Jan;146:124-128. doi: 10.1016/j.rmed.2018.11.018. Epub 2018 Dec 12.

本文引用的文献

6
Automated lobe-based airway labeling.基于肺叶的气道自动标注。
Int J Biomed Imaging. 2012;2012:382806. doi: 10.1155/2012/382806. Epub 2012 Oct 9.
8
Extraction of airways from CT (EXACT'09).从 CT 中提取气道(EXACT'09)。
IEEE Trans Med Imaging. 2012 Nov;31(11):2093-107. doi: 10.1109/TMI.2012.2209674. Epub 2012 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验