Song Jun, Qu Junle, Swihart Mark T, Prasad Paras N
College of Optoelectronic Engineering, Key Lab of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen, China.
College of Optoelectronic Engineering, Key Lab of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen, China.
Nanomedicine. 2016 Apr;12(3):771-788. doi: 10.1016/j.nano.2015.11.009. Epub 2015 Dec 3.
Nanobiophotonics is an emerging field at the intersection of nanoscience, photonics, and biotechnology. Harnessing interactions of light with nanostructures enables new types of bioimaging, sensing, and light-activated therapy which can make a major impact on nanomedicine. Low penetration through tissue limits the use of visible light in nanomedicine. Near infrared (NIR) light (~780-1100 nm) can penetrate significantly further, enabling free-space delivery into deep tissues. This review focuses on interactions of NIR light with nanostructures to produce three effects: direct photoactivation, photothermal effects, and photochemical effects. Applications of direct photoactivation include bioimaging and biosensing using NIR-emitting quantum dots, materials with localized surface plasmon resonance (LSPR) in the NIR, and upconverting nanoparticles. Two key nanomedicine applications using photothermal effects are photothermal therapy (PTT), and photoacoustic (PA) imaging. For photochemical effects, we present the latest advances in in-situ upconversion and upconverting nanostructures for NIR activation of photodynamic therapy (PDT).
Nanobiophotonics is a relatively new field applying light for the interactions with nanostructures, which can be used in bioimaging, sensing, and therapy. As near infrared (NIR) light (~780-1100 nm) can have better tissue penetration, its clinical potential is far greater. In this review, the authors discussed the latest research on the applications of NIR light in imaging and therapeutics.
纳米生物光子学是一个新兴领域,处于纳米科学、光子学和生物技术的交叉点。利用光与纳米结构的相互作用能够实现新型生物成像、传感和光激活疗法,这可能对纳米医学产生重大影响。在纳米医学中,可见光在组织中的穿透性较低,限制了其应用。近红外(NIR)光(约780 - 1100纳米)能够穿透得更远,可实现向深部组织的自由空间递送。本综述聚焦于近红外光与纳米结构的相互作用,以产生三种效应:直接光激活、光热效应和光化学效应。直接光激活的应用包括使用发射近红外光的量子点、具有近红外局域表面等离子体共振(LSPR)的材料以及上转换纳米颗粒进行生物成像和生物传感。利用光热效应的两个关键纳米医学应用是光热疗法(PTT)和光声(PA)成像。对于光化学效应,我们介绍了用于光动力疗法(PDT)近红外激活的原位上转换和上转换纳米结构的最新进展。
纳米生物光子学是一个相对较新的领域,它利用光与纳米结构相互作用,可用于生物成像、传感和治疗。由于近红外(NIR)光(约780 - 1100纳米)具有更好的组织穿透性,其临床潜力更大。在本综述中,作者讨论了近红外光在成像和治疗应用方面的最新研究。