文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

等离子体纳米粒子增强的用于癌症生物标志物检测的光学技术。

Plasmonic Nanoparticle-Enhanced Optical Techniques for Cancer Biomarker Sensing.

机构信息

Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.

Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.

出版信息

Biosensors (Basel). 2023 Nov 8;13(11):977. doi: 10.3390/bios13110977.


DOI:10.3390/bios13110977
PMID:37998152
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10669140/
Abstract

This review summarizes recent advances in leveraging localized surface plasmon resonance (LSPR) nanotechnology for sensitive cancer biomarker detection. LSPR arising from noble metal nanoparticles under light excitation enables the enhancement of various optical techniques, including surface-enhanced Raman spectroscopy (SERS), dark-field microscopy (DFM), photothermal imaging, and photoacoustic imaging. Nanoparticle engineering strategies are discussed to optimize LSPR for maximum signal amplification. SERS utilizes electromagnetic enhancement from plasmonic nanostructures to boost inherently weak Raman signals, enabling single-molecule sensitivity for detecting proteins, nucleic acids, and exosomes. DFM visualizes LSPR nanoparticles based on scattered light color, allowing for the ultrasensitive detection of cancer cells, microRNAs, and proteins. Photothermal imaging employs LSPR nanoparticles as contrast agents that convert light to heat, producing thermal images that highlight cancerous tissues. Photoacoustic imaging detects ultrasonic waves generated by LSPR nanoparticle photothermal expansion for deep-tissue imaging. The multiplexing capabilities of LSPR techniques and integration with microfluidics and point-of-care devices are reviewed. Remaining challenges, such as toxicity, standardization, and clinical sample analysis, are examined. Overall, LSPR nanotechnology shows tremendous potential for advancing cancer screening, diagnosis, and treatment monitoring through the integration of nanoparticle engineering, optical techniques, and microscale device platforms.

摘要

本文综述了利用局域表面等离子体共振(LSPR)纳米技术进行敏感癌症生物标志物检测的最新进展。在光激发下,贵金属纳米粒子产生的 LSPR 使各种光学技术得到增强,包括表面增强拉曼光谱(SERS)、暗场显微镜(DFM)、光热成像和光声成像。讨论了纳米粒子工程策略,以优化 LSPR 以实现最大信号放大。SERS 利用等离子体纳米结构的电磁增强来增强固有较弱的拉曼信号,从而实现对蛋白质、核酸和外泌体的单分子灵敏度检测。DFM 根据散射光的颜色可视化 LSPR 纳米粒子,实现了对癌细胞、microRNAs 和蛋白质的超灵敏检测。光热成像是利用 LSPR 纳米粒子作为对比剂将光转化为热,产生突出癌组织的热图像。光声成像是通过检测 LSPR 纳米粒子光热膨胀产生的超声波来进行深层组织成像。综述了 LSPR 技术的多路复用能力以及与微流控和即时检测设备的集成。还检查了剩余的挑战,如毒性、标准化和临床样本分析。总体而言,LSPR 纳米技术通过整合纳米粒子工程、光学技术和微尺度器件平台,显示出在癌症筛查、诊断和治疗监测方面的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/ca21268a0c42/biosensors-13-00977-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/4758eaf1ba82/biosensors-13-00977-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/c7f19898ac45/biosensors-13-00977-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/130677a7e31a/biosensors-13-00977-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/07b226b54608/biosensors-13-00977-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/fb34b594d771/biosensors-13-00977-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/a264b3c341e4/biosensors-13-00977-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/0a57c7e68f1b/biosensors-13-00977-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/e2810acae433/biosensors-13-00977-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/4c1b5f691100/biosensors-13-00977-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/c14f383c28f0/biosensors-13-00977-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/a72045fb858a/biosensors-13-00977-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/2d75c58c2ae9/biosensors-13-00977-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/233f1ac5b649/biosensors-13-00977-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/855d027e267b/biosensors-13-00977-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/c2a3bf375bb7/biosensors-13-00977-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/ca21268a0c42/biosensors-13-00977-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/4758eaf1ba82/biosensors-13-00977-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/c7f19898ac45/biosensors-13-00977-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/130677a7e31a/biosensors-13-00977-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/07b226b54608/biosensors-13-00977-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/fb34b594d771/biosensors-13-00977-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/a264b3c341e4/biosensors-13-00977-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/0a57c7e68f1b/biosensors-13-00977-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/e2810acae433/biosensors-13-00977-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/4c1b5f691100/biosensors-13-00977-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/c14f383c28f0/biosensors-13-00977-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/a72045fb858a/biosensors-13-00977-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/2d75c58c2ae9/biosensors-13-00977-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/233f1ac5b649/biosensors-13-00977-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/855d027e267b/biosensors-13-00977-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/c2a3bf375bb7/biosensors-13-00977-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d54/10669140/ca21268a0c42/biosensors-13-00977-g016.jpg

相似文献

[1]
Plasmonic Nanoparticle-Enhanced Optical Techniques for Cancer Biomarker Sensing.

Biosensors (Basel). 2023-11-8

[2]
Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.

Acc Chem Res. 2008-12

[3]
Advances in localized surface plasmon resonance spectroscopy biosensing.

Nanomedicine (Lond). 2011-10

[4]
Current strategies of plasmonic nanoparticles assisted surface-enhanced Raman scattering toward biosensor studies.

Biosens Bioelectron. 2023-5-15

[5]
Plasmonic silver and gold nanoparticles: shape- and structure-modulated plasmonic functionality for point-of-caring sensing, bio-imaging and medical therapy.

Chem Soc Rev. 2024-3-18

[6]
Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.

Anal Bioanal Chem. 2009-8

[7]
Plasmonic nanosensors for pharmaceutical and biomedical analysis.

J Pharm Biomed Anal. 2023-11-30

[8]
Application of Gold Nanoparticle to Plasmonic Biosensors.

Int J Mol Sci. 2018-7-11

[9]
Plasmonic Vesicles of Amphiphilic Nanocrystals: Optically Active Multifunctional Platform for Cancer Diagnosis and Therapy.

Acc Chem Res. 2015-9-15

[10]
Localized surface plasmon resonance biosensors.

Nanomedicine (Lond). 2006-8

引用本文的文献

[1]
Early Detection and Monitoring of Nephrolithiasis: The Potential of Electrochemical Sensors.

Sensors (Basel). 2025-4-17

[2]
Overview of the Design and Application of Photothermal Immunoassays.

Sensors (Basel). 2024-10-6

[3]
AI-Based Metamaterial Design.

ACS Appl Mater Interfaces. 2024-6-12

[4]
The Strong Coupling Effect between Metallic Split-Ring Resonators and Molecular Vibrations in Polymethyl Methacrylate.

Sensors (Basel). 2024-4-12

本文引用的文献

[1]
Revolutionizing cancer monitoring with carbon-based electrochemical biosensors.

Environ Res. 2023-12-15

[2]
Strategies and Applications of Graphene and Its Derivatives-Based Electrochemical Sensors in Cancer Diagnosis.

Molecules. 2023-9-20

[3]
Deep-Learning-Based High-Intensity Focused Ultrasound Lesion Segmentation in Multi-Wavelength Photoacoustic Imaging.

Bioengineering (Basel). 2023-9-8

[4]
Monodisperse Sub-100 nm Au Nanoshells for Low-Fluence Deep-Tissue Photoacoustic Imaging.

Nano Lett. 2023-8-23

[5]
Recent advances of Au@Ag core-shell SERS-based biosensors.

Exploration (Beijing). 2023-2-7

[6]
Emerging integrated SERS-microfluidic devices for analysis of cancer-derived small extracellular vesicles.

Lab Chip. 2023-6-28

[7]
Optical Detection of Cancer Cells Using Lab-on-a-Chip.

Biosensors (Basel). 2023-3-30

[8]
Calf thymus ds-DNA intercalation with pendimethalin herbicide at the surface of ZIF-8/Co/rGO/CN/ds-DNA/SPCE; A bio-sensing approach for pendimethalin quantification confirmed by molecular docking study.

Chemosphere. 2023-8

[9]
A clinically feasible diagnostic spectro-histology built on SERS-nanotags for multiplex detection and grading of breast cancer biomarkers.

Biosens Bioelectron. 2023-5-1

[10]
Multiplex signal amplification strategy-based early-stage diagnosis of Parkinson's disease on a SERS-enabled LoC system.

Anal Chim Acta. 2023-3-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索