Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
Biosensors (Basel). 2023 Nov 8;13(11):977. doi: 10.3390/bios13110977.
This review summarizes recent advances in leveraging localized surface plasmon resonance (LSPR) nanotechnology for sensitive cancer biomarker detection. LSPR arising from noble metal nanoparticles under light excitation enables the enhancement of various optical techniques, including surface-enhanced Raman spectroscopy (SERS), dark-field microscopy (DFM), photothermal imaging, and photoacoustic imaging. Nanoparticle engineering strategies are discussed to optimize LSPR for maximum signal amplification. SERS utilizes electromagnetic enhancement from plasmonic nanostructures to boost inherently weak Raman signals, enabling single-molecule sensitivity for detecting proteins, nucleic acids, and exosomes. DFM visualizes LSPR nanoparticles based on scattered light color, allowing for the ultrasensitive detection of cancer cells, microRNAs, and proteins. Photothermal imaging employs LSPR nanoparticles as contrast agents that convert light to heat, producing thermal images that highlight cancerous tissues. Photoacoustic imaging detects ultrasonic waves generated by LSPR nanoparticle photothermal expansion for deep-tissue imaging. The multiplexing capabilities of LSPR techniques and integration with microfluidics and point-of-care devices are reviewed. Remaining challenges, such as toxicity, standardization, and clinical sample analysis, are examined. Overall, LSPR nanotechnology shows tremendous potential for advancing cancer screening, diagnosis, and treatment monitoring through the integration of nanoparticle engineering, optical techniques, and microscale device platforms.
本文综述了利用局域表面等离子体共振(LSPR)纳米技术进行敏感癌症生物标志物检测的最新进展。在光激发下,贵金属纳米粒子产生的 LSPR 使各种光学技术得到增强,包括表面增强拉曼光谱(SERS)、暗场显微镜(DFM)、光热成像和光声成像。讨论了纳米粒子工程策略,以优化 LSPR 以实现最大信号放大。SERS 利用等离子体纳米结构的电磁增强来增强固有较弱的拉曼信号,从而实现对蛋白质、核酸和外泌体的单分子灵敏度检测。DFM 根据散射光的颜色可视化 LSPR 纳米粒子,实现了对癌细胞、microRNAs 和蛋白质的超灵敏检测。光热成像是利用 LSPR 纳米粒子作为对比剂将光转化为热,产生突出癌组织的热图像。光声成像是通过检测 LSPR 纳米粒子光热膨胀产生的超声波来进行深层组织成像。综述了 LSPR 技术的多路复用能力以及与微流控和即时检测设备的集成。还检查了剩余的挑战,如毒性、标准化和临床样本分析。总体而言,LSPR 纳米技术通过整合纳米粒子工程、光学技术和微尺度器件平台,显示出在癌症筛查、诊断和治疗监测方面的巨大潜力。
Biosensors (Basel). 2023-11-8
Nanomedicine (Lond). 2011-10
Biosens Bioelectron. 2023-5-15
J Pharm Biomed Anal. 2023-11-30
Int J Mol Sci. 2018-7-11
Nanomedicine (Lond). 2006-8
Sensors (Basel). 2025-4-17
Sensors (Basel). 2024-10-6
ACS Appl Mater Interfaces. 2024-6-12
Environ Res. 2023-12-15
Bioengineering (Basel). 2023-9-8
Exploration (Beijing). 2023-2-7
Biosensors (Basel). 2023-3-30