Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA.
Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA.
Adv Drug Deliv Rev. 2023 Apr;195:114730. doi: 10.1016/j.addr.2023.114730. Epub 2023 Feb 13.
Bioorthogonal transition metal catalysts (TMCs) transform therapeutically inactive molecules (pro-drugs) into active drug compounds. Inorganic nanoscaffolds protect and solubilize catalysts while offering a flexible design space for decoration with targeting elements and stimuli-responsive activity. These "drug factories" can activate pro-drugs in situ, localizing treatment to the disease site and minimizing off-target effects. Inorganic nanoscaffolds provide structurally diverse scaffolds for encapsulating TMCs. This ability to define the catalyst environment can be employed to enhance the stability and selectivity of the TMC, providing access to enzyme-like bioorthogonal processes. The use of inorganic nanomaterials as scaffolds TMCs and the use of these bioorthogonal nanozymes in vitro and in vivo applications will be discussed in this review.
生物正交过渡金属催化剂 (TMCs) 将治疗无效的分子(前药)转化为活性药物化合物。无机纳米支架保护和增溶催化剂,同时为靶向元素和刺激响应活性的装饰提供了灵活的设计空间。这些“药物工厂”可以原位激活前药,将治疗定位在疾病部位,并最大限度地减少脱靶效应。无机纳米支架为封装 TMC 提供了结构多样的支架。这种定义催化剂环境的能力可用于提高 TMC 的稳定性和选择性,从而实现类似酶的生物正交过程。本综述将讨论将无机纳米材料作为支架 TMCs 以及将这些生物正交纳米酶用于体外和体内应用。