Suppr超能文献

一种基于微小RNA的肝细胞癌淋巴结转移预测模型。

A microRNA-based prediction model for lymph node metastasis in hepatocellular carcinoma.

作者信息

Zhang Li, Xiang Zuo-Lin, Zeng Zhao-Chong, Fan Jia, Tang Zhao-You, Zhao Xiao-Mei

机构信息

Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.

Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.

出版信息

Oncotarget. 2016 Jan 19;7(3):3587-98. doi: 10.18632/oncotarget.6534.

Abstract

We developed an efficient microRNA (miRNA) model that could predict the risk of lymph node metastasis (LNM) in hepatocellular carcinoma (HCC). We first evaluated a training cohort of 192 HCC patients after hepatectomy and found five LNM associated predictive factors: vascular invasion, Barcelona Clinic Liver Cancer stage, miR-145, miR-31, and miR-92a. The five statistically independent factors were used to develop a predictive model. The predictive value of the miRNA-based model was confirmed in a validation cohort of 209 consecutive HCC patients. The prediction model was scored for LNM risk from 0 to 8. The cutoff value 4 was used to distinguish high-risk and low-risk groups. The model sensitivity and specificity was 69.6 and 80.2%, respectively, during 5 years in the validation cohort. And the area under the curve (AUC) for the miRNA-based prognostic model was 0.860. The 5-year positive and negative predictive values of the model in the validation cohort were 30.3 and 95.5%, respectively. Cox regression analysis revealed that the LNM hazard ratio of the high-risk versus low-risk groups was 11.751 (95% CI, 5.110-27.021; P < 0.001) in the validation cohort. In conclusion, the miRNA-based model is reliable and accurate for the early prediction of LNM in patients with HCC.

摘要

我们开发了一种有效的微小RNA(miRNA)模型,该模型可以预测肝细胞癌(HCC)患者发生淋巴结转移(LNM)的风险。我们首先对192例接受肝切除术后的HCC患者组成的训练队列进行了评估,发现了五个与LNM相关的预测因素:血管侵犯、巴塞罗那临床肝癌分期、miR-145、miR-31和miR-92a。利用这五个具有统计学独立性的因素建立了一个预测模型。在由209例连续的HCC患者组成的验证队列中证实了基于miRNA的模型的预测价值。该预测模型对LNM风险的评分范围为0至8分。使用临界值4来区分高风险组和低风险组。在验证队列中,该模型在5年期间的敏感性和特异性分别为69.6%和80.2%。基于miRNA的预后模型的曲线下面积(AUC)为0.860。在验证队列中,该模型的5年阳性和阴性预测值分别为30.3%和95.5%。Cox回归分析显示,在验证队列中,高风险组与低风险组的LNM风险比为11.751(95%CI,5.110-27.021;P<0.001)。总之,基于miRNA的模型对于HCC患者LNM的早期预测是可靠且准确的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89aa/4823129/ee47d343c542/oncotarget-07-3587-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验