Chen Yi-Je, Nguyen Hai M, Maezawa Izumi, Grössinger Eva M, Garing April L, Köhler Ralf, Jin Lee-Way, Wulff Heike
Department of Pharmacology, University of California, Davis, CA, USA.
Microsurgery Core, University of California, Davis, CA, USA.
J Cereb Blood Flow Metab. 2016 Dec;36(12):2146-2161. doi: 10.1177/0271678X15611434. Epub 2015 Nov 2.
Activated microglia/macrophages significantly contribute to the secondary inflammatory damage in ischemic stroke. Cultured neonatal microglia express the K channels Kv1.3 and KCa3.1, both of which have been reported to be involved in microglia-mediated neuronal killing, oxidative burst and cytokine production. However, it is questionable whether neonatal cultures accurately reflect the K channel expression of activated microglia in the adult brain. We here subjected mice to middle cerebral artery occlusion with eight days of reperfusion and patch-clamped acutely isolated microglia/macrophages. Microglia from the infarcted area exhibited higher densities of K currents with the biophysical and pharmacological properties of Kv1.3, KCa3.1 and Kir2.1 than microglia from non-infarcted control brains. Similarly, immunohistochemistry on human infarcts showed strong Kv1.3 and KCa3.1 immunoreactivity on activated microglia/macrophages. We next investigated the effect of genetic deletion and pharmacological blockade of KCa3.1 in reversible middle cerebral artery occlusion. KCa3.1 mice and wild-type mice treated with the KCa3.1 blocker TRAM-34 exhibited significantly smaller infarct areas on day-8 after middle cerebral artery occlusion and improved neurological deficit. Both manipulations reduced microglia/macrophage activation and brain cytokine levels. Our findings suggest KCa3.1 as a pharmacological target for ischemic stroke. Of potential, clinical relevance is that KCa3.1 blockade is still effective when initiated 12 h after the insult.
活化的小胶质细胞/巨噬细胞在缺血性卒中的继发性炎症损伤中起重要作用。培养的新生小胶质细胞表达钾通道Kv1.3和KCa3.1,据报道这两种通道都参与小胶质细胞介导的神经元杀伤、氧化爆发和细胞因子产生。然而,新生细胞培养物是否能准确反映成人大脑中活化小胶质细胞的钾通道表达仍值得怀疑。我们在此对小鼠进行大脑中动脉闭塞并再灌注8天,然后对急性分离的小胶质细胞/巨噬细胞进行膜片钳记录。与来自未梗死对照脑的小胶质细胞相比,梗死区域的小胶质细胞表现出具有Kv1.3、KCa3.1和Kir2.1生物物理和药理学特性的更高密度的钾电流。同样,对人类梗死灶的免疫组织化学显示,活化的小胶质细胞/巨噬细胞上有强烈的Kv1.3和KCa3.1免疫反应性。接下来,我们研究了在可逆性大脑中动脉闭塞中基因缺失和药物阻断KCa3.1的作用。KCa3.1基因敲除小鼠和用KCa3.1阻断剂TRAM - 34处理的野生型小鼠在大脑中动脉闭塞后第8天梗死面积显著减小,神经功能缺损改善。两种处理均减少了小胶质细胞/巨噬细胞活化和脑细胞因子水平。我们的研究结果表明KCa3.1是缺血性卒中的一个药理学靶点。具有潜在临床意义的是,在损伤后12小时开始阻断KCa3.1仍然有效。