Lehrstuhl für Physikalische Chemie II and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
Beilstein J Nanotechnol. 2014 Jul 30;5:1175-85. doi: 10.3762/bjnano.5.129. eCollection 2014.
The autocatalytic growth of arbitrarily shaped nanostructures fabricated by electron beam-induced deposition (EBID) and electron beam-induced surface activation (EBISA) is studied for two precursors: iron pentacarbonyl, Fe(CO)5, and cobalt tricarbonyl nitrosyl, Co(CO)3NO. Different deposits are prepared on silicon nitride membranes and silicon wafers under ultrahigh vacuum conditions, and are studied by scanning electron microscopy (SEM) and scanning transmission X-ray microscopy (STXM), including near edge X-ray absorption fine structure (NEXAFS) spectroscopy. It has previously been shown that Fe(CO)5 decomposes autocatalytically on Fe seed layers (EBID) and on certain electron beam-activated surfaces, yielding high purity, polycrystalline Fe nanostructures. In this contribution, we investigate the growth of structures from Co(CO)3NO and compare it to results obtained from Fe(CO)5. Co(CO)3NO exhibits autocatalytic growth on Co-containing seed layers prepared by EBID using the same precursor. The growth yields granular, oxygen-, carbon- and nitrogen-containing deposits. In contrast to Fe(CO)5 no decomposition on electron beam-activated surfaces is observed. In addition, we show that the autocatalytic growth of nanostructures from Co(CO)3NO can also be initiated by an Fe seed layer, which presents a novel approach to the fabrication of layered nanostructures.
任意形状纳米结构的自催化生长是通过电子束诱导沉积(EBID)和电子束诱导表面激活(EBISA)制备的,本研究选用了两种前体:五羰基铁(Fe(CO)5)和三羰基硝酰钴(Co(CO)3NO)。在超高真空条件下,将不同的沉积物沉积在氮化硅膜和硅片上,通过扫描电子显微镜(SEM)和扫描透射 X 射线显微镜(STXM)进行研究,包括近边 X 射线吸收精细结构(NEXAFS)光谱。此前已经表明,Fe(CO)5 在 Fe 种子层(EBID)和某些电子束激活表面上自催化分解,生成高纯度的多晶 Fe 纳米结构。在本研究中,我们研究了 Co(CO)3NO 生长结构,并将其与 Fe(CO)5 的结果进行了比较。Co(CO)3NO 在通过 EBID 使用相同前体制备的含 Co 种子层上表现出自催化生长。生长得到了颗粒状、含氧、含碳和含氮的沉积物。与 Fe(CO)5 不同,没有观察到电子束激活表面上的分解。此外,我们还表明,Co(CO)3NO 纳米结构的自催化生长也可以由 Fe 种子层引发,这为分层纳米结构的制造提供了一种新方法。