Grup de Sensors i Biosensors, Departament de Química, Facultat de Ciències, Edifici C-Nord, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Bellaterra), Spain.
Grup de Sensors i Biosensors, Departament de Química, Facultat de Ciències, Edifici C-Nord, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Bellaterra), Spain.
Biosens Bioelectron. 2016 Apr 15;78:505-512. doi: 10.1016/j.bios.2015.11.081. Epub 2015 Nov 30.
In this work we present the construction of immunosensors based on graphite-epoxy which incorporate RIgG to the composite matrix. In order to improve the electrochemical properties of the immunocomposite electrodes, characterization and optimization was carried out in terms of electrochemical impedance spectroscopy and cyclic voltammetry. Consequently, taking into the account the properties required by a sensitive electrode such as high electron-transfer rate, high signal-to-noise ratio and suitable sensitivity; the optimal proportion of the transducer material (graphite-epoxy ratio) was chosen using constant amount of RIgG. The optimum composition range values, which provide these requirements, were from 16% to 17% of graphite loading. Then, the analytical properties of these immunosensors were evaluated measuring RIgG by using a competitive assay and using alkaline phosphatase-labeled antibody. Amperometric measurements were performed using hydrogen peroxide as substrate. Moreover, it has been the first time that it has been performed an optimization of the antigen-antibody ratio used in the assay, being this reduced significantly.
在这项工作中,我们展示了基于石墨-环氧树脂的免疫传感器的构建,其中将 RIgG 结合到复合材料基质中。为了提高免疫复合物电极的电化学性能,我们对其进行了电化学阻抗谱和循环伏安法的表征和优化。因此,考虑到敏感电极所需的特性,如高电子转移速率、高信噪比和适当的灵敏度;使用恒定量的 RIgG 选择了换能器材料(石墨-环氧树脂比例)的最佳比例。提供这些要求的最佳组成范围值为 16%至 17%的石墨负载量。然后,通过使用竞争性测定法和碱性磷酸酶标记的抗体测量 RIgG,评估了这些免疫传感器的分析特性。使用过氧化氢作为底物进行了安培测量。此外,这是第一次对测定中使用的抗原-抗体比例进行优化,该比例显著降低。