Suppr超能文献

解读干细胞静止周期——来自酵母对再生生物学的启示

Decoding the stem cell quiescence cycle--lessons from yeast for regenerative biology.

作者信息

Dhawan Jyotsna, Laxman Sunil

机构信息

Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India CSIR Center for Cellular and Molecular Biology, Hyderabad, India

Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India

出版信息

J Cell Sci. 2015 Dec 15;128(24):4467-74. doi: 10.1242/jcs.177758.

Abstract

In the past decade, major advances have occurred in the understanding of mammalian stem cell biology, but roadblocks (including gaps in our fundamental understanding) remain in translating this knowledge to regenerative medicine. Interestingly, a close analysis of the Saccharomyces cerevisiae literature leads to an appreciation of how much yeast biology has contributed to the conceptual framework underpinning our understanding of stem cell behavior, to the point where such insights have been internalized into the realm of the known. This Opinion article focuses on one such example, the quiescent adult mammalian stem cell, and examines concepts underlying our understanding of quiescence that can be attributed to studies in yeast. We discuss the metabolic, signaling and gene regulatory events that control entry and exit into quiescence in yeast. These processes and events retain remarkable conservation and conceptual parallels in mammalian systems, and collectively suggest a regulated program beyond the cessation of cell division. We argue that studies in yeast will continue to not only reveal fundamental concepts in quiescence, but also leaven progress in regenerative medicine.

摘要

在过去十年中,我们对哺乳动物干细胞生物学的理解取得了重大进展,但在将这些知识转化为再生医学的过程中,仍然存在障碍(包括我们在基本理解上的差距)。有趣的是,仔细分析酿酒酵母的文献会让人认识到,酵母生物学对支撑我们理解干细胞行为的概念框架做出了多大贡献,以至于这些见解已被内化为已知领域的一部分。这篇观点文章聚焦于一个这样的例子,即静止的成年哺乳动物干细胞,并审视我们对静止状态理解背后的概念,这些概念可归因于酵母研究。我们讨论了控制酵母进入和退出静止状态的代谢、信号传导和基因调控事件。这些过程和事件在哺乳动物系统中保持着显著的保守性和概念上的相似性,并共同表明存在一个超越细胞分裂停止的调控程序。我们认为,对酵母的研究不仅将继续揭示静止状态的基本概念,还将推动再生医学的进展。

相似文献

1
Decoding the stem cell quiescence cycle--lessons from yeast for regenerative biology.
J Cell Sci. 2015 Dec 15;128(24):4467-74. doi: 10.1242/jcs.177758.
2
Mechanisms, Hallmarks, and Implications of Stem Cell Quiescence.
Stem Cell Reports. 2019 Jun 11;12(6):1190-1200. doi: 10.1016/j.stemcr.2019.05.012.
3
Metabolic status rather than cell cycle signals control quiescence entry and exit.
J Cell Biol. 2011 Mar 21;192(6):949-57. doi: 10.1083/jcb.201009028. Epub 2011 Mar 14.
4
Cellular quiescence in budding yeast.
Yeast. 2021 Jan;38(1):12-29. doi: 10.1002/yea.3545. Epub 2021 Jan 25.
5
Quiescence Entry, Maintenance, and Exit in Adult Stem Cells.
Int J Mol Sci. 2019 May 1;20(9):2158. doi: 10.3390/ijms20092158.
6
The cell biology of quiescent yeast - a diversity of individual scenarios.
J Cell Sci. 2019 Jan 2;132(1):jcs213025. doi: 10.1242/jcs.213025.
7
Stem cell quiescence: the challenging path to activation.
Development. 2021 Feb 8;148(3):dev165084. doi: 10.1242/dev.165084.
8
Molecular Regulation of Cellular Quiescence: A Perspective from Adult Stem Cells and Its Niches.
Methods Mol Biol. 2018;1686:1-25. doi: 10.1007/978-1-4939-7371-2_1.
9
A common strategy for initiating the transition from proliferation to quiescence.
Curr Genet. 2017 May;63(2):179-186. doi: 10.1007/s00294-016-0640-0. Epub 2016 Aug 20.
10
Molecular regulation of stem cell quiescence.
Nat Rev Mol Cell Biol. 2013 Jun;14(6):329-40. doi: 10.1038/nrm3591.

引用本文的文献

1
Quiescent cancer cells induced by high-density cultivation reveals cholesterol-mediated survival and lung metastatic traits.
Br J Cancer. 2024 Nov;131(10):1591-1604. doi: 10.1038/s41416-024-02861-x. Epub 2024 Oct 11.
2
Diverse geroprotectors differently affect a mechanism linking cellular aging to cellular quiescence in budding yeast.
Oncotarget. 2022 Jul 28;13:918-943. doi: 10.18632/oncotarget.28256. eCollection 2022.
3
On the Ecological Significance of Phenotypic Heterogeneity in Microbial Populations Undergoing Starvation.
Microbiol Spectr. 2022 Feb 23;10(1):e0045021. doi: 10.1128/spectrum.00450-21. Epub 2022 Jan 12.
4
Septins in Stem Cells.
Front Cell Dev Biol. 2021 Dec 9;9:801507. doi: 10.3389/fcell.2021.801507. eCollection 2021.
5
Is There a Histone Code for Cellular Quiescence?
Front Cell Dev Biol. 2021 Oct 29;9:739780. doi: 10.3389/fcell.2021.739780. eCollection 2021.
7
Hematopoietic stem cells retain functional potential and molecular identity in hibernation cultures.
Stem Cell Reports. 2021 Jun 8;16(6):1614-1628. doi: 10.1016/j.stemcr.2021.04.002. Epub 2021 May 6.
8
Chromatin structure restricts origin utilization when quiescent cells re-enter the cell cycle.
Nucleic Acids Res. 2021 Jan 25;49(2):864-878. doi: 10.1093/nar/gkaa1148.
9
Cellular quiescence in budding yeast.
Yeast. 2021 Jan;38(1):12-29. doi: 10.1002/yea.3545. Epub 2021 Jan 25.
10

本文引用的文献

1
The analysis, roles and regulation of quiescence in hematopoietic stem cells.
Development. 2014 Dec;141(24):4656-66. doi: 10.1242/dev.106575.
2
Muscle stem cells at a glance.
J Cell Sci. 2014 Nov 1;127(Pt 21):4543-8. doi: 10.1242/jcs.151209. Epub 2014 Oct 9.
3
Hematopoietic stem cell niche maintenance during homeostasis and regeneration.
Nat Med. 2014 Aug;20(8):833-46. doi: 10.1038/nm.3647.
4
Modelling mammalian cellular quiescence.
Interface Focus. 2014 Jun 6;4(3):20130074. doi: 10.1098/rsfs.2013.0074.
5
mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G(Alert).
Nature. 2014 Jun 19;510(7505):393-6. doi: 10.1038/nature13255. Epub 2014 May 25.
6
Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors.
Science. 2014 May 9;344(6184):630-4. doi: 10.1126/science.1251141. Epub 2014 May 5.
7
Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle.
Science. 2014 May 9;344(6184):649-52. doi: 10.1126/science.1251152. Epub 2014 May 5.
8
Geriatric muscle stem cells switch reversible quiescence into senescence.
Nature. 2014 Feb 20;506(7488):316-21. doi: 10.1038/nature13013. Epub 2014 Feb 12.
10
Aging and differentiation in yeast populations: elders with different properties and functions.
FEMS Yeast Res. 2014 Feb;14(1):96-108. doi: 10.1111/1567-1364.12103. Epub 2013 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验