Suppr超能文献

学习拉格朗日:一种基于向量值 RKHS 的拉格朗日系统辨识方法。

Learn the Lagrangian: A Vector-Valued RKHS Approach to Identifying Lagrangian Systems.

出版信息

IEEE Trans Cybern. 2016 Dec;46(12):3247-3258. doi: 10.1109/TCYB.2015.2501842. Epub 2015 Dec 8.

Abstract

We study the modeling of Lagrangian systems with multiple degrees of freedom. Based on system dynamics, canonical parametric models require ad hoc derivations and sometimes simplification for a computable solution; on the other hand, due to the lack of prior knowledge in the system's structure, modern nonparametric models in machine learning face the curse of dimensionality, especially in learning large systems. In this paper, we bridge this gap by unifying the theories of Lagrangian systems and vector-valued reproducing kernel Hilbert space. We reformulate Lagrangian systems with kernels that embed the governing Euler-Lagrange equation-the Lagrangian kernels-and show that these kernels span a subspace capturing the Lagrangian's projection as inverse dynamics. By such property, our model uses only inputs and outputs as in machine learning and inherits the structured form as in system dynamics, thereby removing the need for the mundane derivations for new systems as well as the generalization problem in learning from scratches. In effect, it learns the system's Lagrangian, a simpler task than directly learning the dynamics. To demonstrate, we applied the proposed kernel to identify the robot inverse dynamics in simulations and experiments. Our results present a competitive novel approach to identifying Lagrangian systems, despite using only inputs and outputs.

摘要

我们研究了具有多个自由度的拉格朗日系统的建模。基于系统动力学,正则参数模型需要特殊推导,有时为了可计算解还需要简化;另一方面,由于系统结构缺乏先验知识,机器学习中的现代非参数模型在学习大型系统时面临维数灾难的问题。在本文中,我们通过统一拉格朗日系统和向量值再生核希尔伯特空间的理论来弥合这一差距。我们用核函数来重新表述拉格朗日系统,这些核函数将控制的欧拉-拉格朗日方程——拉格朗日核函数——嵌入其中,并表明这些核函数可以张成一个子空间,捕捉拉格朗日作为逆动力学的投影。通过这种特性,我们的模型只使用输入和输出,就像在机器学习中一样,并且继承了系统动力学中的结构化形式,从而不需要为新系统进行繁琐的推导,也不需要从零开始学习的泛化问题。实际上,它学习系统的拉格朗日,这比直接学习动力学要简单得多。为了证明这一点,我们在模拟和实验中应用了所提出的核函数来识别机器人的逆动力学。尽管我们只使用了输入和输出,但我们的结果提出了一种有竞争力的识别拉格朗日系统的新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验