Suppr超能文献

控制酮与氧气在铜催化氧化反应中 C-C 断裂与 C-H 键羟化反应的因素。

Factors That Control C-C Cleavage versus C-H Bond Hydroxylation in Copper-Catalyzed Oxidations of Ketones with O2.

机构信息

Institute of Organic Chemistry, RWTH Aachen University , Landoltweg 1, 52074 Aachen, Germany.

出版信息

J Am Chem Soc. 2016 Jan 20;138(2):518-26. doi: 10.1021/jacs.5b08347. Epub 2016 Jan 5.

Abstract

The Cu-catalyzed oxidation of ketones with O2 has recently been extensively utilized to cleave the α-C-C bond. This report examines the selective aerobic hydroxylation of tertiary α-C-H bonds in ketones without C-C cleavage. We set out to understand the underlying mechanisms of these two possible reactivity modes. Using experimental, in situ IR spectroscopic, and computational studies, we investigated several mechanisms. Our data suggest that both C-C cleavage and C-H hydroxylation pathways proceed via a common key intermediate, i.e., an α-peroxo ketone. The fate of this peroxide dictates the ultimate product selectivity. Specifically, we uncovered the role of hppH [=1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine] to act not only as a base in the transformation but also as a reductant of the peroxide to the corresponding α-hydroxy ketone. This reduction may also be accomplished through exogenous phosphine additives, therefore allowing the tuning of reduction efficiency toward higher driving forces, if required (e.g., for more-activated substrates). The likely competitive pathway is the cleavage of peroxide to the α-oxy radical (likely catalyzed by Cu), which is computationally predicted to spontaneously trigger C-C bond cleavage. Increasing the susceptibility of this deperoxidation step via (i) the removal of reductant (use of different base, e.g., DBU) or the modulation of (ii) the substitution pattern toward greater activation (substrate control) and (iii) the nature of Cu catalyst (counterion and solvent dependence) will favor the C-C cleavage product.

摘要

最近,铜催化的酮与 O2 的氧化反应被广泛用于切断 α-C-C 键。本报告考察了酮中叔 α-C-H 键的选择性有氧羟化反应,而不发生 C-C 断裂。我们旨在了解这两种可能的反应性模式的潜在机制。通过实验、原位红外光谱和计算研究,我们研究了几种机制。我们的数据表明,C-C 断裂和 C-H 羟化途径都通过共同的关键中间体,即 α-过氧酮进行。过氧化物的命运决定了最终产物的选择性。具体来说,我们揭示了 hppH(即 1,3,4,6,7,8-六氢-2H-嘧啶并[1,2-a]嘧啶)不仅作为转化中的碱,而且作为过氧化物还原为相应的 α-羟基酮的作用。这种还原也可以通过外源膦添加剂来完成,因此如果需要(例如,对于更活化的底物),可以调节还原效率以获得更高的驱动力。可能的竞争途径是过氧化物断裂为 α-氧自由基(可能由 Cu 催化),理论上预测该自由基会自发引发 C-C 键断裂。通过(i)去除还原剂(例如,使用不同的碱,如 DBU)或通过(ii)取代模式向更大的活化(底物控制)和(iii)Cu 催化剂的性质(抗衡离子和溶剂依赖性)来增加这种去氧化步骤的易感性,将有利于 C-C 断裂产物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验