Schoors Sandra, Bruning Ulrike, Missiaen Rindert, Queiroz Karla Cs, Borgers Gitte, Elia Ilaria, Zecchin Annalisa, Cantelmo Anna Rita, Christen Stefan, Goveia Jermaine, Heggermont Ward, Goddé Lucica, Vinckier Stefan, Van Veldhoven Paul P, Eelen Guy, Schoonjans Luc, Gerhardt Holger, Dewerchin Mieke, Baes Myriam, De Bock Katrien, Ghesquière Bart, Lunt Sophia Y, Fendt Sarah-Maria, Carmeliet Peter
Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, B-3000, Belgium.
Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, B-3000, Belgium.
Nature. 2015 Apr 9;520(7546):192-197. doi: 10.1038/nature14362. Epub 2015 Apr 1.
The metabolism of endothelial cells during vessel sprouting remains poorly studied. Here we report that endothelial loss of CPT1A, a rate-limiting enzyme of fatty acid oxidation (FAO), causes vascular sprouting defects due to impaired proliferation, not migration, of human and murine endothelial cells. Reduction of FAO in endothelial cells did not cause energy depletion or disturb redox homeostasis, but impaired de novo nucleotide synthesis for DNA replication. Isotope labelling studies in control endothelial cells showed that fatty acid carbons substantially replenished the Krebs cycle, and were incorporated into aspartate (a nucleotide precursor), uridine monophosphate (a precursor of pyrimidine nucleoside triphosphates) and DNA. CPT1A silencing reduced these processes and depleted endothelial cell stores of aspartate and deoxyribonucleoside triphosphates. Acetate (metabolized to acetyl-CoA, thereby substituting for the depleted FAO-derived acetyl-CoA) or a nucleoside mix rescued the phenotype of CPT1A-silenced endothelial cells. Finally, CPT1 blockade inhibited pathological ocular angiogenesis in mice, suggesting a novel strategy for blocking angiogenesis.
血管萌芽过程中内皮细胞的代谢仍未得到充分研究。在此我们报告,脂肪酸氧化(FAO)的限速酶CPT1A在内皮细胞中的缺失,会导致人和小鼠内皮细胞增殖受损而非迁移受损,从而引起血管萌芽缺陷。内皮细胞中FAO的减少不会导致能量耗竭或扰乱氧化还原稳态,但会损害用于DNA复制的从头核苷酸合成。对照内皮细胞的同位素标记研究表明,脂肪酸碳显著补充了三羧酸循环,并被整合到天冬氨酸(一种核苷酸前体)、单磷酸尿苷(嘧啶核苷三磷酸的前体)和DNA中。CPT1A沉默减少了这些过程,并耗尽了内皮细胞中天冬氨酸和脱氧核糖核苷三磷酸的储备。乙酸盐(代谢为乙酰辅酶A,从而替代耗尽的FAO衍生的乙酰辅酶A)或核苷混合物挽救了CPT1A沉默的内皮细胞的表型。最后,CPT1阻断抑制了小鼠病理性眼部血管生成,提示了一种阻断血管生成的新策略。