Haye Joanna E, Gammie Alison E
Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America.
PLoS Genet. 2015 Dec 18;11(12):e1005719. doi: 10.1371/journal.pgen.1005719. eCollection 2015 Dec.
During replication, mismatch repair proteins recognize and repair mispaired bases that escape the proofreading activity of DNA polymerase. In this work, we tested the model that the eukaryotic mismatch recognition complex tracks with the advancing replisome. Using yeast, we examined the dynamics during replication of the leading strand polymerase Polε using Pol2 and the eukaryotic mismatch recognition complex using Msh2, the invariant protein involved in mismatch recognition. Specifically, we synchronized cells and processed samples using chromatin immunoprecipitation combined with custom DNA tiling arrays (ChIP-chip). The Polε signal was not detectable in G1, but was observed at active origins and replicating DNA throughout S-phase. The Polε signal provided the resolution to track origin firing timing and efficiencies as well as replisome progression rates. By detecting Polε and Msh2 dynamics within the same strain, we established that the mismatch recognition complex binds origins and spreads to adjacent regions with the replisome. In mismatch repair defective PCNA mutants, we observed that Msh2 binds to regions of replicating DNA, but the distribution and dynamics are altered, suggesting that PCNA is not the sole determinant for the mismatch recognition complex association with replicating regions, but may influence the dynamics of movement. Using biochemical and genomic methods, we provide evidence that both MutS complexes are in the vicinity of the replisome to efficiently repair the entire spectrum of mutations during replication. Our data supports the model that the proximity of MutSα/β to the replisome for the efficient repair of the newly synthesized strand before chromatin reassembles.
在复制过程中,错配修复蛋白识别并修复逃避DNA聚合酶校对活性的错配碱基。在这项研究中,我们测试了真核错配识别复合物随前进的复制体移动的模型。我们利用酵母,通过染色质免疫沉淀结合定制DNA平铺阵列(ChIP-chip)来检测前导链聚合酶Polε在复制过程中的动态变化,Polε由Pol2编码;同时检测真核错配识别复合物的动态变化,该复合物由参与错配识别的不变蛋白Msh2组成。具体而言,我们使细胞同步化,并对样本进行处理。在G1期未检测到Polε信号,但在整个S期的活跃起始位点和正在复制的DNA上均观察到该信号。Polε信号为追踪起始位点的激活时间和效率以及复制体的前进速率提供了分辨率。通过在同一菌株中检测Polε和Msh2的动态变化,我们确定错配识别复合物结合起始位点并随复制体扩散到相邻区域。在错配修复缺陷的PCNA突变体中,我们观察到Msh2结合到正在复制的DNA区域,但分布和动态变化有所改变,这表明PCNA不是错配识别复合物与复制区域结合的唯一决定因素,但可能影响其移动动态。通过生化和基因组方法,我们提供证据表明两种MutS复合物都在复制体附近,以便在复制过程中有效修复所有类型的突变。我们的数据支持这样的模型,即MutSα/β靠近复制体,以便在染色质重新组装之前有效修复新合成链上的突变。