Suppr超能文献

基于假设窗口长宽比估计的新型车辆检测方法

New Vehicle Detection Method with Aspect Ratio Estimation for Hypothesized Windows.

作者信息

Kim Jisu, Baek Jeonghyun, Park Yongseo, Kim Euntai

机构信息

The School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749, Korea.

Department of Electrical Engineering, Gachon University, Seongnam 461-701, Korea.

出版信息

Sensors (Basel). 2015 Dec 9;15(12):30927-41. doi: 10.3390/s151229838.

Abstract

All kinds of vehicles have different ratios of width to height, which are called the aspect ratios. Most previous works, however, use a fixed aspect ratio for vehicle detection (VD). The use of a fixed vehicle aspect ratio for VD degrades the performance. Thus, the estimation of a vehicle aspect ratio is an important part of robust VD. Taking this idea into account, a new on-road vehicle detection system is proposed in this paper. The proposed method estimates the aspect ratio of the hypothesized windows to improve the VD performance. Our proposed method uses an Aggregate Channel Feature (ACF) and a support vector machine (SVM) to verify the hypothesized windows with the estimated aspect ratio. The contribution of this paper is threefold. First, the estimation of vehicle aspect ratio is inserted between the HG (hypothesis generation) and the HV (hypothesis verification). Second, a simple HG method named a signed horizontal edge map is proposed to speed up VD. Third, a new measure is proposed to represent the overlapping ratio between the ground truth and the detection results. This new measure is used to show that the proposed method is better than previous works in terms of robust VD. Finally, the Pittsburgh dataset is used to verify the performance of the proposed method.

摘要

各类车辆具有不同的宽高比,这些宽高比被称为纵横比。然而,大多数先前的工作在车辆检测(VD)中使用固定的纵横比。在车辆检测中使用固定的车辆纵横比会降低性能。因此,车辆纵横比的估计是稳健车辆检测的重要组成部分。考虑到这一想法,本文提出了一种新的道路车辆检测系统。所提出的方法估计假设窗口的纵横比以提高车辆检测性能。我们提出的方法使用聚合通道特征(ACF)和支持向量机(SVM)来验证具有估计纵横比的假设窗口。本文的贡献有三个方面。首先,车辆纵横比的估计被插入到假设生成(HG)和假设验证(HV)之间。其次,提出了一种名为带符号水平边缘图的简单假设生成方法来加速车辆检测。第三,提出了一种新的度量来表示真实值与检测结果之间的重叠率。这种新度量用于表明所提出的方法在稳健车辆检测方面优于先前的工作。最后,使用匹兹堡数据集来验证所提出方法的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b23f/4721758/0e53aea44a81/sensors-15-29838-g001.jpg

相似文献

1
New Vehicle Detection Method with Aspect Ratio Estimation for Hypothesized Windows.
Sensors (Basel). 2015 Dec 9;15(12):30927-41. doi: 10.3390/s151229838.
2
Anchor Generation Optimization and Region of Interest Assignment for Vehicle Detection.
Sensors (Basel). 2019 Mar 3;19(5):1089. doi: 10.3390/s19051089.
4
A Hybrid Vehicle Detection Method Based on Viola-Jones and HOG + SVM from UAV Images.
Sensors (Basel). 2016 Aug 19;16(8):1325. doi: 10.3390/s16081325.
5
Tire-road friction estimation and traction control strategy for motorized electric vehicle.
PLoS One. 2017 Jun 29;12(6):e0179526. doi: 10.1371/journal.pone.0179526. eCollection 2017.
6
FAST Pre-Filtering-Based Real Time Road Sign Detection for Low-Cost Vehicle Localization.
Sensors (Basel). 2018 Oct 22;18(10):3590. doi: 10.3390/s18103590.
7
Robust vehicle detection under various environments to realize road traffic flow surveillance using an infrared thermal camera.
ScientificWorldJournal. 2015;2015:947272. doi: 10.1155/2015/947272. Epub 2015 Feb 11.
8
An Improved YOLOv2 for Vehicle Detection.
Sensors (Basel). 2018 Dec 4;18(12):4272. doi: 10.3390/s18124272.
9
Robust Road Condition Detection System Using In-Vehicle Standard Sensors.
Sensors (Basel). 2015 Dec 19;15(12):32056-78. doi: 10.3390/s151229908.
10
Wide aspect ratio matching for robust face detection.
Multimed Tools Appl. 2023;82(7):10535-10552. doi: 10.1007/s11042-022-13667-5. Epub 2022 Sep 6.

本文引用的文献

1
Fast Feature Pyramids for Object Detection.
IEEE Trans Pattern Anal Mach Intell. 2014 Aug;36(8):1532-45. doi: 10.1109/TPAMI.2014.2300479.
2
A speed-up scheme based on multiple-instance pruning for pedestrian detection using a support vector machine.
IEEE Trans Image Process. 2013 Dec;22(12):4752-61. doi: 10.1109/TIP.2013.2277823. Epub 2013 Aug 8.
3
Log-Gabor filters for image-based vehicle verification.
IEEE Trans Image Process. 2013 Jun;22(6):2286-95. doi: 10.1109/TIP.2013.2249080.
4
Object detection with discriminatively trained part-based models.
IEEE Trans Pattern Anal Mach Intell. 2010 Sep;32(9):1627-45. doi: 10.1109/TPAMI.2009.167.
5
Learning a family of detectors via multiplicative kernels.
IEEE Trans Pattern Anal Mach Intell. 2011 Mar;33(3):514-30. doi: 10.1109/TPAMI.2010.117.
6
Online boosting for vehicle detection.
IEEE Trans Syst Man Cybern B Cybern. 2010 Jun;40(3):892-902. doi: 10.1109/TSMCB.2009.2032527. Epub 2009 Nov 10.
7
Vehicle detection using normalized color and edge map.
IEEE Trans Image Process. 2007 Mar;16(3):850-64. doi: 10.1109/tip.2007.891147.
8
On-road vehicle detection: a review.
IEEE Trans Pattern Anal Mach Intell. 2006 May;28(5):694-711. doi: 10.1109/TPAMI.2006.104.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验