Velazquez-Pupo Roxana, Sierra-Romero Alberto, Torres-Roman Deni, Shkvarko Yuriy V, Santiago-Paz Jayro, Gómez-Gutiérrez David, Robles-Valdez Daniel, Hermosillo-Reynoso Fernando, Romero-Delgado Misael
Center for Advanced Research and Education of the National Polytechnic Institute of Mexico, CINVESTAV Guadalajara, Zapopan C.P. 45019, Mexico.
Intel Labs, Intel Tecnología de Mexico, Zapopan C.P. 45019, Mexico.
Sensors (Basel). 2018 Jan 27;18(2):374. doi: 10.3390/s18020374.
This paper presents a high performance vision-based system with a single static camera for traffic surveillance, for moving vehicle detection with occlusion handling, tracking, counting, and One Class Support Vector Machine (OC-SVM) classification. In this approach, moving objects are first segmented from the background using the adaptive Gaussian Mixture Model (GMM). After that, several geometric features are extracted, such as vehicle area, height, width, centroid, and bounding box. As occlusion is present, an algorithm was implemented to reduce it. The tracking is performed with adaptive Kalman filter. Finally, the selected geometric features: estimated area, height, and width are used by different classifiers in order to sort vehicles into three classes: small, midsize, and large. Extensive experimental results in eight real traffic videos with more than 4000 ground truth vehicles have shown that the improved system can run in real time under an occlusion index of 0.312 and classify vehicles with a global or , , and of up to 98.190%, and an of up to 99.051% for midsize vehicles.
本文提出了一种基于视觉的高性能系统,该系统采用单个静态相机进行交通监控,用于处理遮挡的移动车辆检测、跟踪、计数以及一类支持向量机(OC-SVM)分类。在这种方法中,首先使用自适应高斯混合模型(GMM)从背景中分割出移动对象。之后,提取几个几何特征,如车辆面积、高度、宽度、质心和边界框。由于存在遮挡,实施了一种算法来减少遮挡。使用自适应卡尔曼滤波器进行跟踪。最后,不同的分类器使用选定的几何特征:估计面积、高度和宽度,以便将车辆分为三类:小型、中型和大型。在八个包含4000多辆真实车辆的真实交通视频中进行的大量实验结果表明,改进后的系统能够在遮挡指数为0.312的情况下实时运行,对车辆进行分类,全局准确率或召回率、精确率高达98.190%,中型车辆的召回率高达99.051%。