Suppr超能文献

结构 MRI 表面分割的性能缩放:ABCD 研究中的机器学习分析。

Performance scaling for structural MRI surface parcellations: a machine learning analysis in the ABCD Study.

机构信息

Departments of Complex Systems and Psychiatry, University of Vermont, Burlington, VT 05401, United States.

出版信息

Cereb Cortex. 2022 Dec 15;33(1):176-194. doi: 10.1093/cercor/bhac060.

Abstract

The use of predefined parcellations on surface-based representations of the brain as a method for data reduction is common across neuroimaging studies. In particular, prediction-based studies typically employ parcellation-driven summaries of brain measures as input to predictive algorithms, but the choice of parcellation and its influence on performance is often ignored. Here we employed preprocessed structural magnetic resonance imaging (sMRI) data from the Adolescent Brain Cognitive Development Study® to examine the relationship between 220 parcellations and out-of-sample predictive performance across 45 phenotypic measures in a large sample of 9- to 10-year-old children (N = 9,432). Choice of machine learning (ML) pipeline and use of alternative multiple parcellation-based strategies were also assessed. Relative parcellation performance was dependent on the spatial resolution of the parcellation, with larger number of parcels (up to ~4,000) outperforming coarser parcellations, according to a power-law scaling of between 1/4 and 1/3. Performance was further influenced by the type of parcellation, ML pipeline, and general strategy, with existing literature-based parcellations, a support vector-based pipeline, and ensembling across multiple parcellations, respectively, as the highest performing. These findings highlight the choice of parcellation as an important influence on downstream predictive performance, showing in some cases that switching to a higher resolution parcellation can yield a relatively large boost to performance.

摘要

在基于大脑表面的表示形式上使用预定义的分割作为数据减少的方法在神经影像学研究中很常见。特别是,基于预测的研究通常采用基于分割的大脑测量摘要作为输入到预测算法中,但分割的选择及其对性能的影响往往被忽略。在这里,我们使用来自青少年大脑认知发展研究®的预处理结构磁共振成像 (sMRI) 数据,在一个包含 9 至 10 岁儿童的大样本中(N=9432),检查了 220 个分割与 45 个表型测量的样本外预测性能之间的关系。我们还评估了机器学习 (ML) 管道的选择和替代的基于多个分割的策略的使用。相对分割性能取决于分割的空间分辨率,随着分割的数量增加(最多约 4000 个),根据 1/4 到 1/3 的幂律缩放,性能优于较粗的分割。性能还受到分割类型、ML 管道和一般策略的影响,基于现有文献的分割、基于支持向量的管道和多个分割的集成分别具有最高的性能。这些发现强调了分割选择作为下游预测性能的重要影响,在某些情况下,切换到更高分辨率的分割可以相对较大地提高性能。

相似文献

3
Evaluation of functional MRI-based human brain parcellation: a review.基于功能磁共振成像的人脑分割评估:综述。
J Neurophysiol. 2022 Jul 1;128(1):197-217. doi: 10.1152/jn.00411.2021. Epub 2022 Jun 8.
5
Using connectomics for predictive assessment of brain parcellations.利用连接组学进行脑部分割的预测评估。
Neuroimage. 2021 Sep;238:118170. doi: 10.1016/j.neuroimage.2021.118170. Epub 2021 Jun 1.

本文引用的文献

5
Predicting alcohol dependence from multi-site brain structural measures.从多部位脑结构测量预测酒精依赖。
Hum Brain Mapp. 2022 Jan;43(1):555-565. doi: 10.1002/hbm.25248. Epub 2020 Oct 16.
7
Fine-grain atlases of functional modes for fMRI analysis.用于 fMRI 分析的功能模式的细粒度图谱。
Neuroimage. 2020 Nov 1;221:117126. doi: 10.1016/j.neuroimage.2020.117126. Epub 2020 Jul 13.
8
Machine Learning With Neuroimaging: Evaluating Its Applications in Psychiatry.机器学习与神经影像学:评估其在精神病学中的应用。
Biol Psychiatry Cogn Neurosci Neuroimaging. 2020 Aug;5(8):791-798. doi: 10.1016/j.bpsc.2019.11.007. Epub 2019 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验