Peruzzo Denis, Castellani Umberto, Perlini Cinzia, Bellani Marcella, Marinelli Veronica, Rambaldelli Gianluca, Lasalvia Antonio, Tosato Sarah, De Santi Katia, Murino Vittorio, Ruggeri Mirella, Brambilla Paolo
Department of Computer Science, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.
J Neural Transm (Vienna). 2015 Jun;122(6):897-905. doi: 10.1007/s00702-014-1324-x. Epub 2014 Oct 26.
Currently, most of the classification studies of psychosis focused on chronic patients and employed single machine learning approaches. To overcome these limitations, we here compare, to our best knowledge for the first time, different classification methods of first-episode psychosis (FEP) using multi-modal imaging data exploited on several cortical and subcortical structures and white matter fiber bundles. 23 FEP patients and 23 age-, gender-, and race-matched healthy participants were included in the study. An innovative multivariate approach based on multiple kernel learning (MKL) methods was implemented on structural MRI and diffusion tensor imaging. MKL provides the best classification performances in comparison with the more widely used support vector machine, enabling the definition of a reliable automatic decisional system based on the integration of multi-modal imaging information. Our results show a discrimination accuracy greater than 90 % between healthy subjects and patients with FEP. Regions with an accuracy greater than 70 % on different imaging sources and measures were middle and superior frontal gyrus, parahippocampal gyrus, uncinate fascicles, and cingulum. This study shows that multivariate machine learning approaches integrating multi-modal and multisource imaging data can classify FEP patients with high accuracy. Interestingly, specific grey matter structures and white matter bundles reach high classification reliability when using different imaging modalities and indices, potentially outlining a prefronto-limbic network impaired in FEP with particular regard to the right hemisphere.
目前,大多数精神病分类研究聚焦于慢性病患者,且采用的是单机学习方法。为克服这些局限性,据我们所知,我们首次在此比较了使用多个皮质和皮质下结构及白质纤维束上利用的多模态成像数据对首发精神病(FEP)进行不同分类的方法。该研究纳入了23名FEP患者以及23名年龄、性别和种族匹配的健康参与者。基于多核学习(MKL)方法的一种创新多变量方法应用于结构磁共振成像和扩散张量成像。与更广泛使用的支持向量机相比,MKL提供了最佳分类性能,能够基于多模态成像信息的整合定义一个可靠的自动决策系统。我们的结果显示,健康受试者与FEP患者之间的辨别准确率大于90%。在不同成像源和测量中准确率大于70%的区域有额中回和额上回、海马旁回、钩束和扣带。该研究表明,整合多模态和多源成像数据的多变量机器学习方法能够高精度地对FEP患者进行分类。有趣的是,当使用不同成像模态和指标时,特定灰质结构和白质束具有较高的分类可靠性,这可能勾勒出FEP中受损的前额叶-边缘网络,尤其是在右半球方面。