Suppr超能文献

减数分裂

Meiosis.

作者信息

Hillers Kenneth J, Jantsch Verena, Martinez-Perez Enrique, Yanowitz Judith L

机构信息

Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, United States.

Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter,1030 Vienna, Austria.

出版信息

WormBook. 2017 May 4;2017:1-43. doi: 10.1895/wormbook.1.178.1.

Abstract

Sexual reproduction requires the production of haploid gametes (sperm and egg) with only one copy of each chromosome; fertilization then restores the diploid chromosome content in the next generation. This reduction in genetic content is accomplished during a specialized cell division called meiosis, in which two rounds of chromosome segregation follow a single round of DNA replication. In preparation for the first meiotic division, homologous chromosomes pair and synapse, creating a context that promotes formation of crossover recombination events. These crossovers, in conjunction with sister chromatid cohesion, serve to connect the two homologs and facilitate their segregation to opposite poles during the first meiotic division. During the second meiotic division, which is similar to mitosis, sister chromatids separate; the resultant products are haploid cells that become gametes. In Caenorhabditis elegans (and most other eukaryotes) homologous pairing and recombination are required for proper chromosome inheritance during meiosis; accordingly, the events of meiosis are tightly coordinated to ensure the proper execution of these events. In this chapter, we review the seminal events of meiosis: pairing of homologous chromosomes, the changes in chromosome structure that chromosomes undergo during meiosis, the events of meiotic recombination, the differentiation of homologous chromosome pairs into structures optimized for proper chromosome segregation at Meiosis I, and the ultimate segregation of chromosomes during the meiotic divisions. We also review the regulatory processes that ensure the coordinated execution of these meiotic events during prophase I.

摘要

有性生殖需要产生单倍体配子(精子和卵子),每个染色体只有一份拷贝;受精随后在下一代中恢复二倍体染色体含量。这种遗传物质的减少是在一种称为减数分裂的特殊细胞分裂过程中完成的,在减数分裂中,两轮染色体分离跟随一轮DNA复制。在为第一次减数分裂做准备时,同源染色体配对并联会,创造了一个促进交叉重组事件形成的环境。这些交叉,连同姐妹染色单体黏连,用于连接两个同源物,并在第一次减数分裂期间促进它们向相反两极的分离。在与有丝分裂相似的第二次减数分裂期间,姐妹染色单体分离;产生的产物是成为配子的单倍体细胞。在秀丽隐杆线虫(以及大多数其他真核生物)中,同源配对和重组是减数分裂期间正确染色体遗传所必需的;因此,减数分裂事件紧密协调以确保这些事件的正确执行。在本章中,我们回顾减数分裂的重要事件:同源染色体配对、染色体在减数分裂期间经历的染色体结构变化、减数分裂重组事件、同源染色体对分化成在减数第一次分裂时为正确染色体分离而优化的结构,以及减数分裂期间染色体的最终分离。我们还回顾了确保在减数第一次分裂前期这些减数分裂事件协调执行的调控过程。

相似文献

1
Meiosis.
WormBook. 2017 May 4;2017:1-43. doi: 10.1895/wormbook.1.178.1.
2
Excess crossovers impede faithful meiotic chromosome segregation in C. elegans.
PLoS Genet. 2020 Sep 4;16(9):e1009001. doi: 10.1371/journal.pgen.1009001. eCollection 2020 Sep.
3
Condensin restructures chromosomes in preparation for meiotic divisions.
J Cell Biol. 2004 Nov 22;167(4):613-25. doi: 10.1083/jcb.200408061.
4
Prophase I: Preparing Chromosomes for Segregation in the Developing Oocyte.
Results Probl Cell Differ. 2017;59:125-173. doi: 10.1007/978-3-319-44820-6_5.
9
Centromere pairing precedes meiotic chromosome pairing in plants.
Sci China Life Sci. 2017 Nov;60(11):1197-1202. doi: 10.1007/s11427-017-9109-y. Epub 2017 Jul 26.
10
Evidence that masking of synapsis imperfections counterbalances quality control to promote efficient meiosis.
PLoS Genet. 2013;9(12):e1003963. doi: 10.1371/journal.pgen.1003963. Epub 2013 Dec 5.

引用本文的文献

1
Unsaturated Fatty Acids Are Required for Germline Proliferation and Membrane Structural Integrity in .
bioRxiv. 2025 Jul 29:2025.07.24.666670. doi: 10.1101/2025.07.24.666670.
4
Crossovers are regulated by a conserved and disordered synaptonemal complex domain.
Nucleic Acids Res. 2025 Feb 8;53(4). doi: 10.1093/nar/gkaf095.
5
Spherical harmonics texture extraction for versatile analysis of biological objects.
PLoS Comput Biol. 2025 Jan 29;21(1):e1012349. doi: 10.1371/journal.pcbi.1012349. eCollection 2025 Jan.
6
The role of Golgi complex proteins in cell division and consequences of their dysregulation.
Front Cell Dev Biol. 2025 Jan 7;12:1513472. doi: 10.3389/fcell.2024.1513472. eCollection 2024.
7
A catalogue of chromosome counts for Phylum Nematoda.
Wellcome Open Res. 2024 Feb 19;9:55. doi: 10.12688/wellcomeopenres.20550.1. eCollection 2024.
8
Genetic manipulation of the genes for clonal seeds results in sterility in cotton.
BMC Plant Biol. 2024 Oct 11;24(1):946. doi: 10.1186/s12870-024-05674-5.
9
Temporal Analysis of DSB Repair Outcome in Caenorhabditis elegans Meiosis.
Methods Mol Biol. 2024;2818:195-212. doi: 10.1007/978-1-0716-3906-1_13.
10
Chromosome fusion and programmed DNA elimination shape karyotypes of nematodes.
Curr Biol. 2024 May 20;34(10):2147-2161.e5. doi: 10.1016/j.cub.2024.04.022. Epub 2024 Apr 29.

本文引用的文献

2
Direct Visualization Reveals Kinetics of Meiotic Chromosome Synapsis.
Cell Rep. 2015 Mar 17;10(10):1639-1645. doi: 10.1016/j.celrep.2015.02.032. Epub 2015 Mar 12.
4
Tel1(ATM)-mediated interference suppresses clustered meiotic double-strand-break formation.
Nature. 2015 Apr 2;520(7545):114-8. doi: 10.1038/nature13993. Epub 2015 Jan 5.
5
The fidelity of synaptonemal complex assembly is regulated by a signaling mechanism that controls early meiotic progression.
Dev Cell. 2014 Nov 24;31(4):503-11. doi: 10.1016/j.devcel.2014.10.001. Epub 2014 Nov 6.
6
The chromosome axis controls meiotic events through a hierarchical assembly of HORMA domain proteins.
Dev Cell. 2014 Nov 24;31(4):487-502. doi: 10.1016/j.devcel.2014.09.013. Epub 2014 Nov 6.
7
The CSN/COP9 signalosome regulates synaptonemal complex assembly during meiotic prophase I of Caenorhabditis elegans.
PLoS Genet. 2014 Nov 6;10(11):e1004757. doi: 10.1371/journal.pgen.1004757. eCollection 2014 Nov.
8
Protein phosphatase 4 promotes chromosome pairing and synapsis, and contributes to maintaining crossover competence with increasing age.
PLoS Genet. 2014 Oct 23;10(10):e1004638. doi: 10.1371/journal.pgen.1004638. eCollection 2014 Oct.
9
Cohesin and its regulation: on the logic of X-shaped chromosomes.
Dev Cell. 2014 Oct 13;31(1):7-18. doi: 10.1016/j.devcel.2014.09.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验