Nizovtsev Alexander P, Pushkarchuk Aliaksandr L, Kilin Sergei Ya, Kargin Nikolai I, Gusev Alexander S, Smirnova Marina O, Jelezko Fedor
National Research Nuclear University "MEPhI", 115409 Moscow, Russia.
Institute of Physics, Nat. Acad. Sci. of Belarus, 220072 Minsk, Belarus.
Nanomaterials (Basel). 2021 May 14;11(5):1303. doi: 10.3390/nano11051303.
Nanostructured diamonds hosting optically active paramagnetic color centers (NV, SiV, GeV, etc.) and hyperfine-coupled with them quantum memory C nuclear spins situated in diamond lattice are currently of great interest to implement emerging quantum technologies (quantum information processing, quantum sensing and metrology). Current methods of creation such as electronic-nuclear spin systems are inherently probabilistic with respect to mutual location of color center electronic spin and C nuclear spins. A new bottom-up approach to fabricate such systems is to synthesize first chemically appropriate diamond-like organic molecules containing desired isotopic constituents in definite positions and then use them as a seed for diamond growth to produce macroscopic diamonds, subsequently creating vacancy-related color centers in them. In particular, diamonds incorporating coupled NV-C spin systems (quantum registers) with specific mutual arrangements of NV and C can be obtained from anisotopic azaadamantane molecule. Here we predict the characteristics of hyperfine interactions () for the NV-C systems in diamonds grown from various isotopically substituted azaadamantane molecules differing in C position in the seed, as well as the orientation of the NV center in the post-obtained diamond. We used the spatial and data simulated earlier for the H-terminated cluster C[NV]H. The data obtained can be used to identify (and correlate with the seed used) the specific NV-C spin system by measuring, e.g., the -induced splitting of the m = ±1 sublevels of the NV center in optically detected magnetic resonance (ODMR) spectra being characteristic for various NV-C systems.
含有光学活性顺磁色心(NV、SiV、GeV等)且与位于金刚石晶格中的量子存储器C核自旋超精细耦合的纳米结构金刚石,目前对于实现新兴量子技术(量子信息处理、量子传感和计量学)具有极大的吸引力。诸如电子 - 核自旋系统等当前创建此类系统的方法,就色心电子自旋与C核自旋的相互位置而言本质上是概率性的。一种制造此类系统的全新自下而上方法是,首先合成在特定位置含有所需同位素成分的化学上合适的类金刚石有机分子,然后将它们用作金刚石生长的种子以生产宏观金刚石,随后在其中创建与空位相关的色心。特别地,包含具有特定NV和C相互排列的耦合NV - C自旋系统(量子寄存器)的金刚石,可以从同位素取代的氮杂金刚烷分子中获得。在这里,我们预测了由种子中C位置不同的各种同位素取代的氮杂金刚烷分子生长的金刚石中NV - C系统的超精细相互作用()特性,以及所得金刚石中NV中心的取向。我们使用了先前针对H端基簇C[NV]H模拟的空间和数据。通过例如测量光学检测磁共振(ODMR)光谱中NV中心m = ±1子能级的 - 诱导分裂(这是各种NV - C系统的特征),所获得的数据可用于识别(并与所用种子相关联)特定的NV - C自旋系统。