Suppr超能文献

放射肿瘤学中的大数据与比较效果研究:协同作用与加速发现

Big Data and Comparative Effectiveness Research in Radiation Oncology: Synergy and Accelerated Discovery.

作者信息

Trifiletti Daniel M, Showalter Timothy N

机构信息

Department of Radiation Oncology, University of Virginia School of Medicine , Charlottesville, VA , USA.

出版信息

Front Oncol. 2015 Dec 8;5:274. doi: 10.3389/fonc.2015.00274. eCollection 2015.

Abstract

Several advances in large data set collection and processing have the potential to provide a wave of new insights and improvements in the use of radiation therapy for cancer treatment. The era of electronic health records, genomics, and improving information technology resources creates the opportunity to leverage these developments to create a learning healthcare system that can rapidly deliver informative clinical evidence. By merging concepts from comparative effectiveness research with the tools and analytic approaches of "big data," it is hoped that this union will accelerate discovery, improve evidence for decision making, and increase the availability of highly relevant, personalized information. This combination offers the potential to provide data and analysis that can be leveraged for ultra-personalized medicine and high-quality, cutting-edge radiation therapy.

摘要

大数据集收集与处理方面的多项进展,有潜力为癌症放射治疗的应用带来一波新的见解与改进。电子健康记录、基因组学时代以及不断改善的信息技术资源,创造了利用这些发展成果创建一个学习型医疗系统的机会,该系统能够迅速提供信息丰富的临床证据。通过将比较效果研究的概念与“大数据”的工具及分析方法相结合,人们希望这种结合将加速发现进程,改善决策证据,并增加高度相关的个性化信息的可得性。这种结合有可能提供可用于超个性化医疗和高质量前沿放射治疗的数据与分析。

相似文献

3
[Big data, generalities and integration in radiotherapy].[大数据、放疗中的一般性与整合]
Cancer Radiother. 2018 Feb;22(1):73-84. doi: 10.1016/j.canrad.2017.04.013. Epub 2017 Nov 14.
5
From Big Data to Precision Medicine.从大数据到精准医学。
Front Med (Lausanne). 2019 Mar 1;6:34. doi: 10.3389/fmed.2019.00034. eCollection 2019.
10
Perspectives on making big data analytics work for oncology.关于使大数据分析在肿瘤学中发挥作用的观点。
Methods. 2016 Dec 1;111:32-44. doi: 10.1016/j.ymeth.2016.08.010. Epub 2016 Aug 29.

引用本文的文献

7
Big data in oncologic imaging.肿瘤影像学中的大数据
Radiol Med. 2017 Jun;122(6):458-463. doi: 10.1007/s11547-016-0687-5. Epub 2016 Sep 13.
8
Big Data in Health: a Literature Review from the Year 2005.健康领域的大数据:2005年以来的文献综述
J Med Syst. 2016 Sep;40(9):209. doi: 10.1007/s10916-016-0565-7. Epub 2016 Aug 13.

本文引用的文献

2
The evolution of cancer registration.癌症登记的演变
Eur J Cancer Care (Engl). 2014 Nov;23(6):757-9. doi: 10.1111/ecc.12259.
3
Topic modeling for cluster analysis of large biological and medical datasets.用于大型生物和医学数据集聚类分析的主题建模
BMC Bioinformatics. 2014;15 Suppl 11(Suppl 11):S11. doi: 10.1186/1471-2105-15-S11-S11. Epub 2014 Oct 21.
4
Can big data cure cancer?大数据能治愈癌症吗?
Fortune. 2014 Aug 11;170(2):70-4, 76, 78.
5
Big Data V4 for integrating patient reported outcomes and quality-of-life indices in clinical practice.
J Cancer Res Ther. 2014 Jul-Sep;10(3):453-5. doi: 10.4103/0973-1482.142741.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验