Suppr超能文献

峰值电阻频率法分析

Analysis of the Peak Resistance Frequency Method.

作者信息

Wang Boshuo, Weiland James D

出版信息

IEEE Trans Biomed Eng. 2016 Oct;63(10):2086-2094. doi: 10.1109/TBME.2015.2510335. Epub 2015 Dec 17.

Abstract

OBJECTIVE

This study analyzes the peak resistance frequency (PRF) method described by Mercanzini et al., a method that can easily extract the tissue resistance from impedance spectroscopy for many neural engineering applications but has no analytical description thus far.

METHODS

Mathematical analyses and computer simulations were used to explore underlying principles, accuracy, and limitations of the PRF method.

RESULTS

The mathematical analyses demonstrated that the PRF method has an inherent but correctable deviation dependent on the idealness of the electrode-tissue interface, which is validated by simulations. Further simulations show that both frequency sampling and noise affect the accuracy of the PRF method, and in general, it performs less accurately than least squares methods. However, the PRF method achieves simplicity and reduced measurement and computation time at the expense of accuracy.

CONCLUSION

From the qualitative results, the PRF method can work with reasonable precision and simplicity, although its limitation and the idealness of the electrode-tissue interface involved should be taken into consideration.

SIGNIFICANCE

This paper provides a mathematical foundation for the PRF method and its practical implementation.

摘要

目的

本研究分析了梅尔坎齐尼等人描述的峰值电阻频率(PRF)方法,该方法可轻松从阻抗谱中提取组织电阻,适用于许多神经工程应用,但迄今为止尚无解析描述。

方法

采用数学分析和计算机模拟来探究PRF方法的基本原理、准确性和局限性。

结果

数学分析表明,PRF方法存在与电极 - 组织界面理想程度相关的固有但可校正的偏差,这一点通过模拟得到了验证。进一步的模拟表明,频率采样和噪声都会影响PRF方法的准确性,总体而言,其准确性低于最小二乘法。然而,PRF方法以牺牲准确性为代价实现了简单性,并减少了测量和计算时间。

结论

从定性结果来看,PRF方法可以在合理的精度和简单性下工作,不过应考虑其局限性以及所涉及的电极 - 组织界面的理想程度。

意义

本文为PRF方法及其实际应用提供了数学基础。

相似文献

1
Analysis of the Peak Resistance Frequency Method.
IEEE Trans Biomed Eng. 2016 Oct;63(10):2086-2094. doi: 10.1109/TBME.2015.2510335. Epub 2015 Dec 17.
2
Reduction of electrode polarization capacitance in low-frequency impedance spectroscopy by using mesh electrodes.
Biosens Bioelectron. 2011 Nov 15;29(1):13-7. doi: 10.1016/j.bios.2011.06.050. Epub 2011 Jul 30.
3
Experimental verification of depolarization effects in bioelectrical impedance measurement.
Biomed Mater Eng. 2014;24(6):3675-83. doi: 10.3233/BME-141195.
4
Microtrap electrode devices for single cell trapping and impedance measurement.
Biomed Microdevices. 2012 Oct;14(5):955-64. doi: 10.1007/s10544-012-9674-3.
5
In Vivo Impedance Characterization of Cortical Recording Electrodes Shows Dependence on Electrode Location and Size.
IEEE Trans Biomed Eng. 2019 Mar;66(3):675-681. doi: 10.1109/TBME.2018.2854623. Epub 2018 Jul 10.
6
Impedance characterization and modeling of electrodes for biomedical applications.
IEEE Trans Biomed Eng. 2005 Jul;52(7):1295-302. doi: 10.1109/TBME.2005.847523.
7
Analytical calculation of the frequency shift in phase oscillators driven by colored noise: implications for electrical engineering and neuroscience.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 2):036113. doi: 10.1103/PhysRevE.80.036113. Epub 2009 Sep 17.
8
Electrical properties of retinal-electrode interface.
J Neural Eng. 2007 Mar;4(1):S24-9. doi: 10.1088/1741-2560/4/1/S04. Epub 2007 Feb 20.
9
Chronic neural stimulation with thin-film, iridium oxide electrodes.
IEEE Trans Biomed Eng. 2000 Jul;47(7):911-8. doi: 10.1109/10.846685.
10
Matlab software for impedance spectroscopy designed for neuroscience applications.
J Neurosci Methods. 2018 Sep 1;307:70-83. doi: 10.1016/j.jneumeth.2018.06.020. Epub 2018 Jun 28.

引用本文的文献

1
Intraretinal Electrophysiology and Resistivity Profiles of WT and RCS Rat Retina.
Sensors (Basel). 2025 Jun 16;25(12):3765. doi: 10.3390/s25123765.
2
Applications of Bioimpedance Measurement Techniques in Tissue Engineering.
J Electr Bioimpedance. 2018 Dec 31;9(1):142-158. doi: 10.2478/joeb-2018-0019. eCollection 2018 Jan.

本文引用的文献

1
Resistivity profiles of wild-type, rd1, and rd10 mouse retina.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:1650-3. doi: 10.1109/EMBC.2015.7318692.
2
Reduction of edge effect on disk electrodes by optimized current waveform.
IEEE Trans Biomed Eng. 2014 Aug;61(8):2254-63. doi: 10.1109/TBME.2014.2300860.
3
Electrical impedance of mouse brain cortex in vitro from 4.7 kHz to 2.0 MHz.
Physiol Meas. 2014 Feb;35(2):267-81. doi: 10.1088/0967-3334/35/2/267. Epub 2014 Jan 16.
4
The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes.
Nat Rev Neurosci. 2012 May 18;13(6):407-20. doi: 10.1038/nrn3241.
5
Surface modification of neural stimulating/recording electrodes with high surface area platinum-iridium alloy coatings.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:3001-4. doi: 10.1109/IEMBS.2011.6090823.
6
Retinal prostheses: current clinical results and future needs.
Ophthalmology. 2011 Nov;118(11):2227-37. doi: 10.1016/j.ophtha.2011.08.042.
7
Impedance as a method to sense proximity at the electrode-retina interface.
IEEE Trans Neural Syst Rehabil Eng. 2011 Dec;19(6):696-9. doi: 10.1109/TNSRE.2011.2169428. Epub 2011 Oct 6.
8
Resolution of the epiretinal prosthesis is not limited by electrode size.
IEEE Trans Neural Syst Rehabil Eng. 2011 Aug;19(4):436-42. doi: 10.1109/TNSRE.2011.2140132. Epub 2011 Apr 19.
9
In vivo impedance spectroscopy of deep brain stimulation electrodes.
J Neural Eng. 2009 Aug;6(4):046001. doi: 10.1088/1741-2560/6/4/046001. Epub 2009 Jun 3.
10
In vivo electrical impedance spectroscopy of tissue reaction to microelectrode arrays.
IEEE Trans Biomed Eng. 2009 Jul;56(7):1909-18. doi: 10.1109/TBME.2009.2018457. Epub 2009 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验