Suppr超能文献

深部脑刺激电极的体内阻抗谱分析

In vivo impedance spectroscopy of deep brain stimulation electrodes.

作者信息

Lempka Scott F, Miocinovic Svjetlana, Johnson Matthew D, Vitek Jerrold L, McIntyre Cameron C

机构信息

Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, OH, USA.

出版信息

J Neural Eng. 2009 Aug;6(4):046001. doi: 10.1088/1741-2560/6/4/046001. Epub 2009 Jun 3.

Abstract

Deep brain stimulation (DBS) represents a powerful clinical technology, but a systematic characterization of the electrical interactions between the electrode and the brain is lacking. The goal of this study was to examine the in vivo changes in the DBS electrode impedance that occur after implantation and during clinically relevant stimulation. Clinical DBS devices typically apply high-frequency voltage-controlled stimulation, and as a result, the injected current is directly regulated by the impedance of the electrode-tissue interface. We monitored the impedance of scaled-down clinical DBS electrodes implanted in the thalamus and subthalamic nucleus of a rhesus macaque using electrode impedance spectroscopy (EIS) measurements ranging from 0.5 Hz to 10 kHz. To further characterize our measurements, equivalent circuit models of the electrode-tissue interface were used to quantify the role of various interface components in producing the observed electrode impedance. Following implantation, the DBS electrode impedance increased and a semicircular arc was observed in the high-frequency range of the EIS measurements, commonly referred to as the tissue component of the impedance. Clinically relevant stimulation produced a rapid decrease in electrode impedance with extensive changes in the tissue component. These post-operative and stimulation-induced changes in impedance could play an important role in the observed functional effects of voltage-controlled DBS and should be considered during clinical stimulation parameter selection and chronic animal research studies.

摘要

深部脑刺激(DBS)是一项强大的临床技术,但目前缺乏对电极与大脑之间电相互作用的系统表征。本研究的目的是研究植入后以及在临床相关刺激期间DBS电极阻抗的体内变化。临床DBS设备通常采用高频电压控制刺激,因此,注入电流直接受电极-组织界面阻抗的调节。我们使用范围从0.5赫兹到10千赫兹的电极阻抗谱(EIS)测量,监测了植入恒河猴丘脑和底丘脑核的小型化临床DBS电极的阻抗。为了进一步表征我们的测量结果,我们使用电极-组织界面的等效电路模型来量化各种界面组件在产生观察到的电极阻抗中的作用。植入后,DBS电极阻抗增加,并且在EIS测量的高频范围内观察到一个半圆弧,通常称为阻抗的组织成分。临床相关刺激导致电极阻抗迅速降低,同时组织成分发生广泛变化。这些术后和刺激引起的阻抗变化可能在观察到的电压控制DBS功能效应中起重要作用,并且在临床刺激参数选择和慢性动物研究中应予以考虑。

相似文献

1
In vivo impedance spectroscopy of deep brain stimulation electrodes.
J Neural Eng. 2009 Aug;6(4):046001. doi: 10.1088/1741-2560/6/4/046001. Epub 2009 Jun 3.
2
Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation.
Exp Neurol. 2009 Mar;216(1):166-76. doi: 10.1016/j.expneurol.2008.11.024. Epub 2008 Dec 11.
3
Sources and effects of electrode impedance during deep brain stimulation.
Clin Neurophysiol. 2006 Feb;117(2):447-54. doi: 10.1016/j.clinph.2005.10.007. Epub 2005 Dec 22.
4
Impedance characteristics of deep brain stimulation electrodes in vitro and in vivo.
J Neural Eng. 2009 Aug;6(4):046008. doi: 10.1088/1741-2560/6/4/046008. Epub 2009 Jul 9.
5
Current-controlled deep brain stimulation reduces in vivo voltage fluctuations observed during voltage-controlled stimulation.
Clin Neurophysiol. 2010 Dec;121(12):2128-33. doi: 10.1016/j.clinph.2010.04.026. Epub 2010 May 20.
6
Nonlinear effects at the electrode-tissue interface of deep brain stimulation electrodes.
J Neural Eng. 2024 Feb 14;21(1). doi: 10.1088/1741-2552/ad2582.
7
Variation in deep brain stimulation electrode impedance over years following electrode implantation.
Stereotact Funct Neurosurg. 2014;92(2):94-102. doi: 10.1159/000358014. Epub 2014 Feb 6.
8
Electrical rejuvenation of chronically implanted macroelectrodes in nonhuman primates.
J Neural Eng. 2024 Jun 27;21(3). doi: 10.1088/1741-2552/ad5703.
9
Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
J Neural Eng. 2005 Dec;2(4):139-47. doi: 10.1088/1741-2560/2/4/010. Epub 2005 Nov 9.
10
Theoretical analysis of the local field potential in deep brain stimulation applications.
PLoS One. 2013;8(3):e59839. doi: 10.1371/journal.pone.0059839. Epub 2013 Mar 28.

引用本文的文献

2
3
Overcoming failure: improving acceptance and success of implanted neural interfaces.
Bioelectron Med. 2025 Mar 14;11(1):6. doi: 10.1186/s42234-025-00168-7.
4
and electrochemical impedance spectroscopy of acute and chronic intracranial electrodes.
Data (Basel). 2024 Jun;9(6). doi: 10.3390/data9060078. Epub 2024 Jun 6.
7
Electrical rejuvenation of chronically implanted macroelectrodes in nonhuman primates.
J Neural Eng. 2024 Jun 27;21(3). doi: 10.1088/1741-2552/ad5703.
8
Optimized Fabrication of Carbon-Fiber Microbiosensors for Codetection of Glucose and Dopamine in Brain Tissue.
ACS Sens. 2024 May 24;9(5):2662-2672. doi: 10.1021/acssensors.4c00527. Epub 2024 Apr 30.
9
Miniature battery-free epidural cortical stimulators.
Sci Adv. 2024 Apr 12;10(15):eadn0858. doi: 10.1126/sciadv.adn0858.
10
Complications of deep brain stimulation in Parkinson's disease: a single-center experience of 517 consecutive cases.
Acta Neurochir (Wien). 2023 Nov;165(11):3385-3396. doi: 10.1007/s00701-023-05799-w. Epub 2023 Sep 29.

本文引用的文献

1
Evolution of brain impedance in dystonic patients treated by GPI electrical stimulation.
Neuromodulation. 2004 Apr;7(2):67-75. doi: 10.1111/j.1094-7159.2004.04009.x.
2
Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation.
Exp Neurol. 2009 Mar;216(1):166-76. doi: 10.1016/j.expneurol.2008.11.024. Epub 2008 Dec 11.
3
Tracking the mechanisms of deep brain stimulation for neuropsychiatric disorders.
Front Biosci. 2008 May 1;13:5892-904. doi: 10.2741/3124.
4
Deep brain stimulation in Tourette's Syndrome.
Neurotherapeutics. 2008 Apr;5(2):339-44. doi: 10.1016/j.nurt.2008.01.009.
5
Treatment of dystonia with deep brain stimulation.
Neurotherapeutics. 2008 Apr;5(2):320-30. doi: 10.1016/j.nurt.2008.01.002.
6
Deep brain stimulation for Parkinson's disease.
Neurotherapeutics. 2008 Apr;5(2):309-19. doi: 10.1016/j.nurt.2008.01.006.
7
Quantifying the effects of the electrode-brain interface on the crossing electric currents in deep brain recording and stimulation.
Neuroscience. 2008 Mar 27;152(3):683-91. doi: 10.1016/j.neuroscience.2008.01.023. Epub 2008 Jan 25.
8
Foreign body reaction to biomaterials.
Semin Immunol. 2008 Apr;20(2):86-100. doi: 10.1016/j.smim.2007.11.004. Epub 2007 Dec 26.
9
Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants.
J Neural Eng. 2007 Dec;4(4):410-23. doi: 10.1088/1741-2560/4/4/007. Epub 2007 Nov 27.
10
Three-dimensional hydrogel cultures for modeling changes in tissue impedance around microfabricated neural probes.
J Neural Eng. 2007 Dec;4(4):399-409. doi: 10.1088/1741-2560/4/4/006. Epub 2007 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验