College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, China.
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585.
Small. 2016 Feb 10;12(6):782-92. doi: 10.1002/smll.201502822. Epub 2015 Dec 23.
Robust luminescent dyes with efficient two-photon fluorescence are highly desirable for biological imaging applications, but those suitable for organic dots fabrication are still rare because of aggregation-caused quenching. In this work, a red fluorescent silole, 2,5-bis[5-(dimesitylboranyl)thiophen-2-yl]-1-methyl-1,3,4-triphenylsilole ((MesB)2 DTTPS), is synthesized and characterized. (MesB)2 DTTPS exhibits enhanced fluorescence efficiency in nanoaggregates, indicative of aggregation-enhanced emission (AEE). The organic dots fabricated by encapsulating (MesB)2 DTTPS within lipid-PEG show red fluorescence peaking at 598 nm and a high fluorescence quantum yield of 32%. Upon excitation at 820 nm, the dots show a large two-photon absorption cross section of 3.43 × 10(5) GM, which yields a two-photon action cross section of 1.09 × 10(5) GM. These (MesB)2 DTTPS dots show good biocompatibility and are successfully applied to one-photon and two-photon fluorescence imaging of MCF-7 cells and two-photon in vivo visualization of the blood vascular of mouse muscle in a high-contrast and noninvasive manner. Moreover, the 3D blood vasculature located at the mouse ear skin with a depth of over 100 μm can also be visualized clearly, providing the spatiotemporal information about the whole blood vascular network.
具有高效双光子荧光的强荧光染料非常适合生物成像应用,但由于聚集引起的猝灭,适合有机点制造的染料仍然很少。在这项工作中,合成并表征了一种红色荧光硅咯,2,5-双[5-(二甲苯硼基)噻吩-2-基]-1-甲基-1,3,4-三苯基硅咯((MesB)2 DTTPS)。(MesB)2 DTTPS 在纳米聚集体中表现出增强的荧光效率,表明聚集增强发射(AEE)。通过将(MesB)2 DTTPS 封装在脂质-PEG 内制备的有机点在 598nm 处呈现红色荧光,荧光量子产率高达 32%。在 820nm 激发下,该点表现出大的双光子吸收截面为 3.43×10(5) GM,产生的双光子作用截面为 1.09×10(5) GM。这些(MesB)2 DTTPS 点具有良好的生物相容性,并成功应用于 MCF-7 细胞的单光子和双光子荧光成像以及小鼠肌肉血管的双光子体内可视化,具有高对比度和非侵入性。此外,还可以清楚地可视化位于小鼠耳皮肤中深度超过 100μm 的 3D 血管,提供整个血管网络的时空信息。