Li Ye-Fei, Zhang Xiao-Xing, Duan Shu-Min
Medical School, Zhejiang University, Hangzhou 310058, China.
Editorial Office of Neuroscience Bulletin, Shanghai Information Center for Life Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200031, China.
Sheng Li Xue Bao. 2015 Dec 25;67(6):545-60.
Neurotransmission begins with neurotransmitter being released from synaptic vesicles. To achieve this function, synaptic vesicles endure the dynamic "release-recycle" process to maintain the function and structure of presynaptic terminal. Synaptic transmission starts with a single action potential that depolarizes axonal bouton, followed by an increase in the cytosolic calcium concentration that triggers the synaptic vesicle membrane fusion with presynaptic membrane to release neurotransmitter; then the vesicle membrane can be endocytosed for reusing afterwards. This process requires delicate regulation, intermediate steps and dynamic balances. Accumulating evidence showed that the release ability and mobility of synapses varies under different stimulations. Synaptic vesicle heterogeneity has been studied at molecular and cellular levels, hopefully leading to the identification of the relationships between structure and function and understanding how vesicle regulation affects synaptic transmission and plasticity. People are beginning to realize that different types of synapses show diverse presynaptic activities. The steady advances of technology studying synaptic vesicle recycling promote people's understanding of this field. In this review, we discuss the following three aspects of the research progresses on synaptic vesicle recycling: 1) presynaptic vesicle pools and recycling; 2) research progresses on the differences of glutamatergic and GABAergic presynaptic vesicle recycling mechanism and 3) comparison of the technologies used in studying presyanptic vesicle recycling and the latest progress in the technology development in this field.
神经传递始于神经递质从突触小泡中释放。为实现这一功能,突触小泡经历动态的“释放-再循环”过程,以维持突触前终末的功能和结构。突触传递始于单个动作电位使轴突终扣去极化,随后胞质钙浓度升高,触发突触小泡膜与突触前膜融合以释放神经递质;然后小泡膜可被内吞以供后续再利用。这个过程需要精细的调节、中间步骤和动态平衡。越来越多的证据表明,在不同刺激下,突触的释放能力和流动性会发生变化。人们已在分子和细胞水平上研究了突触小泡的异质性,有望确定结构与功能之间的关系,并了解小泡调节如何影响突触传递和可塑性。人们开始意识到,不同类型的突触表现出不同的突触前活动。研究突触小泡再循环的技术的不断进步促进了人们对该领域的理解。在这篇综述中,我们讨论突触小泡再循环研究进展的以下三个方面:1)突触前小泡池与再循环;2)谷氨酸能和γ-氨基丁酸能突触前小泡再循环机制差异的研究进展;3)用于研究突触前小泡再循环的技术比较以及该领域技术发展的最新进展。