Suppr超能文献

轻度认知障碍和阿尔茨海默病的预后分类:磁共振成像独立成分分析

Prognostic classification of mild cognitive impairment and Alzheimer's disease: MRI independent component analysis.

作者信息

Willette Auriel A, Calhoun Vince D, Egan Josephine M, Kapogiannis Dimitrios

机构信息

Laboratory of Neurosciences, National Institute on Aging, Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224, USA.

Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA; The Mind Research Network, Albuquerque, NM 87131, USA.

出版信息

Psychiatry Res. 2014 Nov 30;224(2):81-8. doi: 10.1016/j.pscychresns.2014.08.005. Epub 2014 Aug 17.

Abstract

Identifying predictors of mild cognitive impairment (MCI) and Alzheimer's disease (AD) can lead to more accurate diagnosis and facilitate clinical trial participation. We identified 320 participants (93 cognitively normal or CN, 162 MCI, 65 AD) with baseline magnetic resonance imaging (MRI) data, cerebrospinal fluid biomarkers, and cognition data in the Alzheimer's Disease Neuroimaging Initiative database. We used independent component analysis (ICA) on structural MR images to derive 30 matter covariance patterns (ICs) across all participants. These ICs were used in iterative and stepwise discriminant classifier analyses to predict diagnostic classification at 24 months for CN vs. MCI, CN vs. AD, MCI vs. AD, and stable MCI (MCI-S) vs. MCI progression to AD (MCI-P). Models were cross-validated with a "leave-10-out" procedure. For CN vs. MCI, 84.7% accuracy was achieved based on cognitive performance measures, ICs, p-tau(181p), and ApoE ε4 status. For CN vs. AD, 94.8% accuracy was achieved based on cognitive performance measures, ICs, and p-tau(181p). For MCI vs. AD and MCI-S vs. MCI-P, models achieved 83.1% and 80.3% accuracy, respectively, based on cognitive performance measures, ICs, and p-tau(181p). ICA-derived MRI biomarkers achieve excellent diagnostic accuracy for MCI conversion, which is little improved by CSF biomarkers and ApoE ε4 status.

摘要

识别轻度认知障碍(MCI)和阿尔茨海默病(AD)的预测因素能够实现更准确的诊断,并促进临床试验的参与。我们在阿尔茨海默病神经影像倡议数据库中识别出320名参与者(93名认知正常或CN,162名MCI,65名AD),他们拥有基线磁共振成像(MRI)数据、脑脊液生物标志物和认知数据。我们对结构磁共振图像使用独立成分分析(ICA),以得出所有参与者的30种物质协方差模式(IC)。这些IC被用于迭代和逐步判别分类器分析,以预测24个月时CN与MCI、CN与AD、MCI与AD以及稳定MCI(MCI-S)与进展为AD的MCI(MCI-P)的诊断分类。模型通过“留十法”进行交叉验证。对于CN与MCI,基于认知表现测量、IC、磷酸化tau蛋白(181p)和载脂蛋白Eε4状态,准确率达到了84.7%。对于CN与AD,基于认知表现测量、IC和磷酸化tau蛋白(181p),准确率达到了94.8%。对于MCI与AD以及MCI-S与MCI-P,基于认知表现测量、IC和磷酸化tau蛋白(181p),模型分别达到了83.1%和80.3%的准确率。ICA衍生的MRI生物标志物对MCI转化具有出色的诊断准确性,脑脊液生物标志物和载脂蛋白Eε4状态对此几乎没有改善。

相似文献

1
Prognostic classification of mild cognitive impairment and Alzheimer's disease: MRI independent component analysis.
Psychiatry Res. 2014 Nov 30;224(2):81-8. doi: 10.1016/j.pscychresns.2014.08.005. Epub 2014 Aug 17.
3
ApoE4 effects on automated diagnostic classifiers for mild cognitive impairment and Alzheimer's disease.
Neuroimage Clin. 2014 Jan 4;4:461-72. doi: 10.1016/j.nicl.2013.12.012. eCollection 2014.
4
MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change.
Neurology. 2009 Jul 28;73(4):294-301. doi: 10.1212/WNL.0b013e3181af79fb.
5
FDG-PET and CSF biomarker accuracy in prediction of conversion to different dementias in a large multicentre MCI cohort.
Neuroimage Clin. 2018 Jan 28;18:167-177. doi: 10.1016/j.nicl.2018.01.019. eCollection 2018.
6
A data-driven model of biomarker changes in sporadic Alzheimer's disease.
Brain. 2014 Sep;137(Pt 9):2564-77. doi: 10.1093/brain/awu176. Epub 2014 Jul 9.
7
Serial MRI and CSF biomarkers in normal aging, MCI, and AD.
Neurology. 2010 Jul 13;75(2):143-51. doi: 10.1212/WNL.0b013e3181e7ca82.

引用本文的文献

2
Brain Anatomy Prior Modeling to Forecast Clinical Progression of Cognitive Impairment with Structural MRI.
Pattern Recognit. 2025 Sep;165. doi: 10.1016/j.patcog.2025.111603. Epub 2025 Mar 21.
5
Physical activity, brain tissue microstructure, and cognition in older adults.
PLoS One. 2021 Jul 7;16(7):e0253484. doi: 10.1371/journal.pone.0253484. eCollection 2021.
6
Inter-Cohort Validation of SuStaIn Model for Alzheimer's Disease.
Front Big Data. 2021 May 20;4:661110. doi: 10.3389/fdata.2021.661110. eCollection 2021.
7
Extracellular vesicle biomarkers of Alzheimer's disease associated with sub-clinical cognitive decline in late middle age.
Alzheimers Dement. 2020 Sep;16(9):1293-1304. doi: 10.1002/alz.12130. Epub 2020 Jun 26.
8
Predicting MCI progression with FDG-PET and cognitive scores: a longitudinal study.
BMC Neurol. 2020 Apr 21;20(1):148. doi: 10.1186/s12883-020-01728-x.

本文引用的文献

1
Effectiveness of regional DTI measures in distinguishing Alzheimer's disease, MCI, and normal aging.
Neuroimage Clin. 2013 Jul 27;3:180-95. doi: 10.1016/j.nicl.2013.07.006. eCollection 2013.
2
Predicting AD conversion: comparison between prodromal AD guidelines and computer assisted PredictAD tool.
PLoS One. 2013;8(2):e55246. doi: 10.1371/journal.pone.0055246. Epub 2013 Feb 12.
3
Hierarchical fusion of features and classifier decisions for Alzheimer's disease diagnosis.
Hum Brain Mapp. 2014 Apr;35(4):1305-19. doi: 10.1002/hbm.22254. Epub 2013 Feb 18.
4
Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy.
Nat Rev Neurol. 2013 Feb;9(2):106-18. doi: 10.1038/nrneurol.2012.263. Epub 2013 Jan 8.
8
Posteromedial cortex glutamate and GABA predict intrinsic functional connectivity of the default mode network.
Neuroimage. 2013 Jan 1;64:112-9. doi: 10.1016/j.neuroimage.2012.09.029. Epub 2012 Sep 18.
9
Prediction of Alzheimer's disease and mild cognitive impairment using cortical morphological patterns.
Hum Brain Mapp. 2013 Dec;34(12):3411-25. doi: 10.1002/hbm.22156. Epub 2012 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验