Suppr超能文献

面向对象的持久同调

Object-oriented Persistent Homology.

作者信息

Wang Bao, Wei Guo-Wei

机构信息

Department of Mathematics Michigan State University, MI 48824, USA.

Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio 43210, USA.

出版信息

J Comput Phys. 2016 Jan 15;305:276-299. doi: 10.1016/j.jcp.2015.10.036.

Abstract

Persistent homology provides a new approach for the topological simplification of big data via measuring the life time of intrinsic topological features in a filtration process and has found its success in scientific and engineering applications. However, such a success is essentially limited to qualitative data classification and analysis. Indeed, persistent homology has rarely been employed for quantitative modeling and prediction. Additionally, the present persistent homology is a passive tool, rather than a proactive technique, for classification and analysis. In this work, we outline a general protocol to construct object-oriented persistent homology methods. By means of differential geometry theory of surfaces, we construct an objective functional, namely, a surface free energy defined on the data of interest. The minimization of the objective functional leads to a Laplace-Beltrami operator which generates a multiscale representation of the initial data and offers an objective oriented filtration process. The resulting differential geometry based object-oriented persistent homology is able to preserve desirable geometric features in the evolutionary filtration and enhances the corresponding topological persistence. The cubical complex based homology algorithm is employed in the present work to be compatible with the Cartesian representation of the Laplace-Beltrami flow. The proposed Laplace-Beltrami flow based persistent homology method is extensively validated. The consistence between Laplace-Beltrami flow based filtration and Euclidean distance based filtration is confirmed on the Vietoris-Rips complex for a large amount of numerical tests. The convergence and reliability of the present Laplace-Beltrami flow based cubical complex filtration approach are analyzed over various spatial and temporal mesh sizes. The Laplace-Beltrami flow based persistent homology approach is utilized to study the intrinsic topology of proteins and fullerene molecules. Based on a quantitative model which correlates the topological persistence of fullerene central cavity with the total curvature energy of the fullerene structure, the proposed method is used for the prediction of fullerene isomer stability. The efficiency and robustness of the present method are verified by more than 500 fullerene molecules. It is shown that the proposed persistent homology based quantitative model offers good predictions of total curvature energies for ten types of fullerene isomers. The present work offers the first example to design object-oriented persistent homology to enhance or preserve desirable features in the original data during the filtration process and then automatically detect or extract the corresponding topological traits from the data.

摘要

持久同调通过在过滤过程中测量内在拓扑特征的寿命,为大数据的拓扑简化提供了一种新方法,并已在科学和工程应用中取得成功。然而,这种成功本质上仅限于定性数据分类和分析。实际上,持久同调很少用于定量建模和预测。此外,当前的持久同调是一种用于分类和分析的被动工具,而非主动技术。在这项工作中,我们概述了构建面向对象持久同调方法的一般方案。借助曲面的微分几何理论,我们构建了一个目标泛函,即在感兴趣的数据上定义的表面自由能。目标泛函的最小化导致一个拉普拉斯 - 贝尔特拉米算子,该算子生成初始数据的多尺度表示,并提供一个面向目标的过滤过程。由此产生的基于微分几何的面向对象持久同调能够在演化过滤中保留理想的几何特征,并增强相应的拓扑持久性。在本工作中采用基于立方体复形的同调算法,以与拉普拉斯 - 贝尔特拉米流的笛卡尔表示兼容。所提出的基于拉普拉斯 - 贝尔特拉米流的持久同调方法得到了广泛验证。通过大量数值测试,在 Vietoris - Rips 复形上证实了基于拉普拉斯 - 贝尔特拉米流的过滤与基于欧几里得距离的过滤之间的一致性。在各种空间和时间网格尺寸上分析了当前基于拉普拉斯 - 贝尔特拉米流的立方体复形过滤方法的收敛性和可靠性。基于拉普拉斯 - 贝尔特拉米流的持久同调方法被用于研究蛋白质和富勒烯分子的内在拓扑。基于一个将富勒烯中心腔的拓扑持久性与富勒烯结构的总曲率能量相关联的定量模型,所提出的方法用于预测富勒烯异构体的稳定性。通过 500 多个富勒烯分子验证了本方法的效率和稳健性。结果表明,所提出的基于持久同调的定量模型对十种类型的富勒烯异构体的总曲率能量提供了良好的预测。本工作提供了第一个设计面向对象持久同调的示例,以在过滤过程中增强或保留原始数据中的理想特征,然后自动从数据中检测或提取相应的拓扑特征。

相似文献

1
Object-oriented Persistent Homology.
J Comput Phys. 2016 Jan 15;305:276-299. doi: 10.1016/j.jcp.2015.10.036.
2
Persistent homology for the quantitative prediction of fullerene stability.
J Comput Chem. 2015 Mar 5;36(6):408-22. doi: 10.1002/jcc.23816. Epub 2014 Dec 19.
3
Multidimensional persistence in biomolecular data.
J Comput Chem. 2015 Jul 30;36(20):1502-20. doi: 10.1002/jcc.23953. Epub 2015 May 30.
4
Differential geometry based solvation model II: Lagrangian formulation.
J Math Biol. 2011 Dec;63(6):1139-200. doi: 10.1007/s00285-011-0402-z. Epub 2011 Jan 30.
5
Multiscale geometric modeling of macromolecules I: Cartesian representation.
J Comput Phys. 2014 Jan;257(Pt A). doi: 10.1016/j.jcp.2013.09.034.
6
Variational multiscale models for charge transport.
SIAM Rev Soc Ind Appl Math. 2012;54(4):699-754. doi: 10.1137/110845690. Epub 2012 Nov 8.
7
Persistent homology analysis of protein structure, flexibility, and folding.
Int J Numer Method Biomed Eng. 2014 Aug;30(8):814-44. doi: 10.1002/cnm.2655. Epub 2014 Jun 24.
8
Laplace-Beltrami Eigenvalues and Topological Features of Eigenfunctions for Statistical Shape Analysis.
Comput Aided Des. 2009 Oct 1;41(10):739-755. doi: 10.1016/j.cad.2009.02.007.
9
Method for persistent topological features extraction of schizophrenia patients' electroencephalography signal based on persistent homology.
Front Comput Neurosci. 2022 Oct 5;16:1024205. doi: 10.3389/fncom.2022.1024205. eCollection 2022.
10
Persistent spectral graph.
Int J Numer Method Biomed Eng. 2020 Sep;36(9):e3376. doi: 10.1002/cnm.3376. Epub 2020 Aug 17.

引用本文的文献

1
Persistent Homology for RNA Data Analysis.
Methods Mol Biol. 2023;2627:211-229. doi: 10.1007/978-1-0716-2974-1_12.
2
TREPH: A Plug-In Topological Layer for Graph Neural Networks.
Entropy (Basel). 2023 Feb 10;25(2):331. doi: 10.3390/e25020331.
3
EVOLUTIONARY DE RHAM-HODGE METHOD.
Discrete Continuous Dyn Syst Ser B. 2021 Jul;26(7):3785-3821. doi: 10.3934/dcdsb.2020257.
5
Evolutionary homology on coupled dynamical systems with applications to protein flexibility analysis.
J Appl Comput Topol. 2020 Dec;4(4):481-507. doi: 10.1007/s41468-020-00057-9. Epub 2020 Jul 29.
7
A review of mathematical representations of biomolecular data.
Phys Chem Chem Phys. 2020 Feb 26;22(8):4343-4367. doi: 10.1039/c9cp06554g.
8
A roadmap for the computation of persistent homology.
EPJ Data Sci. 2017;6(1):17. doi: 10.1140/epjds/s13688-017-0109-5. Epub 2017 Aug 9.
9
MathDL: mathematical deep learning for D3R Grand Challenge 4.
J Comput Aided Mol Des. 2020 Feb;34(2):131-147. doi: 10.1007/s10822-019-00237-5. Epub 2019 Nov 16.
10
Protein pocket detection via convex hull surface evolution and associated Reeb graph.
Bioinformatics. 2018 Sep 1;34(17):i830-i837. doi: 10.1093/bioinformatics/bty598.

本文引用的文献

1
Multivariate Data Analysis Using Persistence-Based Filtering and Topological Signatures.
IEEE Trans Vis Comput Graph. 2012 Dec;18(12):2382-91. doi: 10.1109/TVCG.2012.248.
2
Multiresolution Topological Simplification.
J Comput Biol. 2015 Sep;22(9):887-91. doi: 10.1089/cmb.2015.0104. Epub 2015 Jul 29.
3
Multidimensional persistence in biomolecular data.
J Comput Chem. 2015 Jul 30;36(20):1502-20. doi: 10.1002/jcc.23953. Epub 2015 May 30.
4
Persistent topology for cryo-EM data analysis.
Int J Numer Method Biomed Eng. 2015 Aug;31(8). doi: 10.1002/cnm.2719. Epub 2015 May 6.
5
Persistent homology for the quantitative prediction of fullerene stability.
J Comput Chem. 2015 Mar 5;36(6):408-22. doi: 10.1002/jcc.23816. Epub 2014 Dec 19.
6
Multiscale Multiphysics and Multidomain Models I: Basic Theory.
J Theor Comput Chem. 2013 Dec;12(8). doi: 10.1142/S021963361341006X.
7
8
Persistent homology analysis of protein structure, flexibility, and folding.
Int J Numer Method Biomed Eng. 2014 Aug;30(8):814-44. doi: 10.1002/cnm.2655. Epub 2014 Jun 24.
9
Multiscale geometric modeling of macromolecules I: Cartesian representation.
J Comput Phys. 2014 Jan;257(Pt A). doi: 10.1016/j.jcp.2013.09.034.
10
Multiscale geometric modeling of macromolecules II: Lagrangian representation.
J Comput Chem. 2013 Sep 15;34(24):2100-20. doi: 10.1002/jcc.23364. Epub 2013 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验