School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, 230027, Anhui, China.
Med Microbiol Immunol. 2016 Jun;205(3):241-53. doi: 10.1007/s00430-015-0446-6. Epub 2015 Dec 28.
Glucose-6-phosphate (G6P) is a common alternative carbon source for various bacteria, and its uptake usually relies on the hexose phosphate antiporter UhpT. In the human pathogenic bacterium Staphylococcus aureus, the ability to utilize different nutrients, particularly alternative carbon source uptake in glucose-limiting conditions, is essential for its fitness in the host environment during the infectious process. It has been reported that G6P uptake in S. aureus is regulated by the three-component system HptRSA. When G6P is provided as the only carbon source, HptRSA could sense extracellular G6P and activate uhpT expression to facilitate G6P utilization. However, the regulatory mechanism of HptRSA is still unclear. In this study, we further investigated the HptRSA system in S. aureus. First, we confirmed that HptRSA is necessary for the normal growth of this pathogen in chemically defined medium with G6P supplementation, and we discovered that HptRSA could exclusively sense extracellular G6P compared to the other organophosphates we tested. Next, using isothermal titration calorimetry, we found that HptA could bind to G6P, suggesting that it may be the G6P sensor. After that experiment, using an electrophoresis mobility shift assay, we verified that the response regulator HptR could directly bind to the uhpT promoter and identified a putative binding site from -67 to -96-bp. Subsequently, we created different point mutations in the putative binding site and revealed that the entire 30-bp sequence is essential for HptR regulation. In summary, we unveiled the regulatory mechanism of the HptRSA system in S. aureus, HptA most likely functions as the G6P sensor, and HptR could implement its regulatory function by directly binding to a conserved, approximately 30-bp sequence in the uhpT promoter.
葡萄糖-6-磷酸(G6P)是各种细菌常用的替代碳源,其摄取通常依赖于己糖磷酸反向转运蛋白 UhpT。在人病原菌金黄色葡萄球菌中,利用不同营养物质的能力,特别是在葡萄糖限制条件下的替代碳源摄取能力,对于其在感染过程中适应宿主环境的适应性至关重要。据报道,金黄色葡萄球菌中的 G6P 摄取受三组分系统 HptRSA 调节。当 G6P 作为唯一碳源提供时,HptRSA 可以感知细胞外的 G6P 并激活 uhpT 表达,以促进 G6P 的利用。然而,HptRSA 的调控机制尚不清楚。在本研究中,我们进一步研究了金黄色葡萄球菌中的 HptRSA 系统。首先,我们证实 HptRSA 对于该病原体在含有 G6P 补充的化学定义培养基中的正常生长是必需的,并且我们发现 HptRSA 可以与我们测试的其他有机磷酸酯相比,仅能感知细胞外的 G6P。接下来,使用等温滴定量热法,我们发现 HptA 可以与 G6P 结合,表明它可能是 G6P 传感器。在该实验之后,我们使用电泳迁移率变动测定法验证了响应调节剂 HptR 可以直接结合到 uhpT 启动子上,并从-67 到-96-bp 鉴定出一个假定的结合位点。随后,我们在假定的结合位点上创建了不同的点突变,并揭示了整个 30-bp 序列对于 HptR 调节是必需的。总之,我们揭示了金黄色葡萄球菌中 HptRSA 系统的调控机制,HptA 很可能作为 G6P 传感器发挥作用,而 HptR 可以通过直接结合到 uhpT 启动子上的保守的大约 30-bp 序列来实现其调节功能。