Petrik Igor D, Davydov Roman, Ross Matthew, Zhao Xuan, Hoffman Brian, Lu Yi
Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.
The Department of Chemistry, Northwestern University , Evanston, Illinois 60201, United States.
J Am Chem Soc. 2016 Feb 3;138(4):1134-7. doi: 10.1021/jacs.5b12004. Epub 2016 Jan 20.
Heme-copper oxidases (HCOs) catalyze efficient reduction of oxygen to water in biological respiration. Despite progress in studying native enzymes and their models, the roles of non-covalent interactions in promoting this activity are still not well understood. Here we report EPR spectroscopic studies of cryoreduced oxy-F33Y-CuBMb, a functional model of HCOs engineered in myoglobin (Mb). We find that cryoreduction at 77 K of the O2-bound form, trapped in the conformation of the parent oxyferrous form, displays a ferric-hydroperoxo EPR signal, in contrast to the cryoreduced oxy-wild-type (WT) Mb, which is unable to deliver a proton and shows a signal from the peroxo-ferric state. Crystallography of oxy-F33Y-CuBMb reveals an extensive H-bond network involving H2O molecules, which is absent from oxy-WTMb. This H-bonding proton-delivery network is the key structural feature that transforms the reversible oxygen-binding protein, WTMb, into F33Y-CuBMb, an oxygen-activating enzyme that reduces O2 to H2O. These results provide direct evidence of the importance of H-bond networks involving H2O in conferring enzymatic activity to a designed protein. Incorporating such extended H-bond networks in designing other metalloenzymes may allow us to confer and fine-tune their enzymatic activities.
血红素-铜氧化酶(HCOs)在生物呼吸过程中高效催化氧气还原为水。尽管在研究天然酶及其模型方面取得了进展,但非共价相互作用在促进这种活性中的作用仍未得到充分理解。在此,我们报告了对低温还原的氧合-F33Y-CuBMb(一种在肌红蛋白(Mb)中工程化的HCOs功能模型)的电子顺磁共振(EPR)光谱研究。我们发现,被困在亲本氧合亚铁形式构象中的O₂结合形式在77 K下进行低温还原时,显示出铁-氢过氧根EPR信号,这与低温还原的氧合野生型(WT)Mb形成对比,后者无法传递质子并显示出来自过氧-铁状态的信号。氧合-F33Y-CuBMb的晶体学研究揭示了一个涉及水分子的广泛氢键网络,而氧合-WTMb中不存在该网络。这个氢键质子传递网络是将可逆氧结合蛋白WTMb转变为将O₂还原为H₂O的氧激活酶F33Y-CuBMb的关键结构特征。这些结果提供了直接证据,证明涉及水的氢键网络在赋予设计蛋白酶活性方面的重要性。在设计其他金属酶时纳入这种扩展的氢键网络可能使我们能够赋予并微调它们的酶活性。